Matches in SemOpenAlex for { <https://semopenalex.org/work/W3094237116> ?p ?o ?g. }
- W3094237116 endingPage "250" @default.
- W3094237116 startingPage "250" @default.
- W3094237116 abstract "While exchanges and regulators are able to observe and analyze the individual behavior of financial market participants through access to labeled data, this information is not accessible by other market participants nor by the general public. A key question, then, is whether it is possible to model individual market participants’ behaviors through observation of publicly available unlabeled market data alone. Several methods have been suggested in the literature using classification methods based on summary trading statistics, as well as using inverse reinforcement learning methods to infer the reward function underlying trader behavior. Our primary contribution is to propose an alternative neural network based multi-modal imitation learning model which performs latent segmentation of stock trading strategies. As a result that the segmentation in the latent space is optimized according to individual reward functions underlying the order submission behaviors across each segment, our results provide interpretable classifications and accurate predictions that outperform other methods in major classification indicators as verified on historical orderbook data from January 2018 to August 2019 obtained from the Tokyo Stock Exchange. By further analyzing the behavior of various trader segments, we confirmed that our proposed segments behaves in line with real-market investor sentiments." @default.
- W3094237116 created "2020-10-29" @default.
- W3094237116 creator A5028823648 @default.
- W3094237116 creator A5033234623 @default.
- W3094237116 creator A5044205949 @default.
- W3094237116 creator A5056955415 @default.
- W3094237116 creator A5067184362 @default.
- W3094237116 creator A5088242177 @default.
- W3094237116 creator A5088750710 @default.
- W3094237116 date "2020-10-23" @default.
- W3094237116 modified "2023-10-16" @default.
- W3094237116 title "Latent Segmentation of Stock Trading Strategies Using Multi-Modal Imitation Learning" @default.
- W3094237116 cites W1916722811 @default.
- W3094237116 cites W1988205006 @default.
- W3094237116 cites W1994451842 @default.
- W3094237116 cites W1997608064 @default.
- W3094237116 cites W2042105482 @default.
- W3094237116 cites W2051828847 @default.
- W3094237116 cites W2064675550 @default.
- W3094237116 cites W2090367157 @default.
- W3094237116 cites W2097152068 @default.
- W3094237116 cites W2101544483 @default.
- W3094237116 cites W2121681609 @default.
- W3094237116 cites W2130726249 @default.
- W3094237116 cites W2133756959 @default.
- W3094237116 cites W2155421208 @default.
- W3094237116 cites W2166302491 @default.
- W3094237116 cites W2238750598 @default.
- W3094237116 cites W2342352817 @default.
- W3094237116 cites W2344786740 @default.
- W3094237116 cites W2594522782 @default.
- W3094237116 cites W2604382266 @default.
- W3094237116 cites W2624385633 @default.
- W3094237116 cites W2734777338 @default.
- W3094237116 cites W2741315186 @default.
- W3094237116 cites W2766940648 @default.
- W3094237116 cites W2908804446 @default.
- W3094237116 cites W2921912129 @default.
- W3094237116 cites W2957390582 @default.
- W3094237116 cites W2965771985 @default.
- W3094237116 cites W3023274588 @default.
- W3094237116 cites W3099273368 @default.
- W3094237116 cites W3125462345 @default.
- W3094237116 cites W3125768928 @default.
- W3094237116 cites W4235708440 @default.
- W3094237116 doi "https://doi.org/10.3390/jrfm13110250" @default.
- W3094237116 hasPublicationYear "2020" @default.
- W3094237116 type Work @default.
- W3094237116 sameAs 3094237116 @default.
- W3094237116 citedByCount "1" @default.
- W3094237116 countsByYear W30942371162023 @default.
- W3094237116 crossrefType "journal-article" @default.
- W3094237116 hasAuthorship W3094237116A5028823648 @default.
- W3094237116 hasAuthorship W3094237116A5033234623 @default.
- W3094237116 hasAuthorship W3094237116A5044205949 @default.
- W3094237116 hasAuthorship W3094237116A5056955415 @default.
- W3094237116 hasAuthorship W3094237116A5067184362 @default.
- W3094237116 hasAuthorship W3094237116A5088242177 @default.
- W3094237116 hasAuthorship W3094237116A5088750710 @default.
- W3094237116 hasBestOaLocation W30942371161 @default.
- W3094237116 hasConcept C119857082 @default.
- W3094237116 hasConcept C125308379 @default.
- W3094237116 hasConcept C126388530 @default.
- W3094237116 hasConcept C149782125 @default.
- W3094237116 hasConcept C154945302 @default.
- W3094237116 hasConcept C15744967 @default.
- W3094237116 hasConcept C162324750 @default.
- W3094237116 hasConcept C166957645 @default.
- W3094237116 hasConcept C175444787 @default.
- W3094237116 hasConcept C205649164 @default.
- W3094237116 hasConcept C2779343474 @default.
- W3094237116 hasConcept C2780299701 @default.
- W3094237116 hasConcept C41008148 @default.
- W3094237116 hasConcept C50644808 @default.
- W3094237116 hasConcept C77805123 @default.
- W3094237116 hasConcept C89600930 @default.
- W3094237116 hasConcept C97541855 @default.
- W3094237116 hasConceptScore W3094237116C119857082 @default.
- W3094237116 hasConceptScore W3094237116C125308379 @default.
- W3094237116 hasConceptScore W3094237116C126388530 @default.
- W3094237116 hasConceptScore W3094237116C149782125 @default.
- W3094237116 hasConceptScore W3094237116C154945302 @default.
- W3094237116 hasConceptScore W3094237116C15744967 @default.
- W3094237116 hasConceptScore W3094237116C162324750 @default.
- W3094237116 hasConceptScore W3094237116C166957645 @default.
- W3094237116 hasConceptScore W3094237116C175444787 @default.
- W3094237116 hasConceptScore W3094237116C205649164 @default.
- W3094237116 hasConceptScore W3094237116C2779343474 @default.
- W3094237116 hasConceptScore W3094237116C2780299701 @default.
- W3094237116 hasConceptScore W3094237116C41008148 @default.
- W3094237116 hasConceptScore W3094237116C50644808 @default.
- W3094237116 hasConceptScore W3094237116C77805123 @default.
- W3094237116 hasConceptScore W3094237116C89600930 @default.
- W3094237116 hasConceptScore W3094237116C97541855 @default.
- W3094237116 hasIssue "11" @default.
- W3094237116 hasLocation W30942371161 @default.
- W3094237116 hasLocation W30942371162 @default.
- W3094237116 hasLocation W30942371163 @default.