Matches in SemOpenAlex for { <https://semopenalex.org/work/W3094320922> ?p ?o ?g. }
- W3094320922 endingPage "108101" @default.
- W3094320922 startingPage "108101" @default.
- W3094320922 abstract "Successful mapping of meaningful labels to sound input requires accurate representation of that sound’s acoustic variances in time and spectrum. For some individuals, such as children or those with hearing loss, having an objective measure of the integrity of this representation could be useful. Classification is a promising machine learning approach which can be used to objectively predict a stimulus label from the brain response. This approach has been previously used with auditory evoked potentials (AEP) such as the frequency following response (FFR), but a number of key issues remain unresolved before classification can be translated into clinical practice. Specifically, past efforts at FFR classification have used data from a given subject for both training and testing the classifier. It is also unclear which components of the FFR elicit optimal classification accuracy. To address these issues, we recorded FFRs from 13 adults with normal hearing in response to speech and music stimuli. We compared labeling accuracy of two cross-validation classification approaches using FFR data: (1) a more traditional method combining subject data in both the training and testing set, and (2) a “leave-one-out” approach, in which subject data is classified based on a model built exclusively from the data of other individuals. We also examined classification accuracy on decomposed and time-segmented FFRs. Our results indicate that the accuracy of leave-one-subject-out cross validation approaches that obtained in the more conventional cross-validation classifications while allowing a subject’s results to be analysed with respect to normative data pooled from a separate population. In addition, we demonstrate that classification accuracy is highest when the entire FFR is used to train the classifier. Taken together, these efforts contribute key steps toward translation of classification-based machine learning approaches into clinical practice." @default.
- W3094320922 created "2020-10-29" @default.
- W3094320922 creator A5002580793 @default.
- W3094320922 creator A5022643612 @default.
- W3094320922 creator A5052449832 @default.
- W3094320922 creator A5059513758 @default.
- W3094320922 creator A5074295257 @default.
- W3094320922 date "2020-12-01" @default.
- W3094320922 modified "2023-09-30" @default.
- W3094320922 title "Factors influencing classification of frequency following responses to speech and music stimuli" @default.
- W3094320922 cites W1596515083 @default.
- W3094320922 cites W1768134850 @default.
- W3094320922 cites W1963104060 @default.
- W3094320922 cites W1964766006 @default.
- W3094320922 cites W1966030508 @default.
- W3094320922 cites W1970156416 @default.
- W3094320922 cites W1975666537 @default.
- W3094320922 cites W1976359337 @default.
- W3094320922 cites W1976433270 @default.
- W3094320922 cites W1979293783 @default.
- W3094320922 cites W1985333700 @default.
- W3094320922 cites W1988255927 @default.
- W3094320922 cites W1991721700 @default.
- W3094320922 cites W2001532167 @default.
- W3094320922 cites W2006718624 @default.
- W3094320922 cites W2007186535 @default.
- W3094320922 cites W2008404414 @default.
- W3094320922 cites W2012582764 @default.
- W3094320922 cites W2013379055 @default.
- W3094320922 cites W2014891636 @default.
- W3094320922 cites W2016204166 @default.
- W3094320922 cites W2016301474 @default.
- W3094320922 cites W2019121859 @default.
- W3094320922 cites W2019697492 @default.
- W3094320922 cites W2027321916 @default.
- W3094320922 cites W2029080395 @default.
- W3094320922 cites W2030248542 @default.
- W3094320922 cites W2033879733 @default.
- W3094320922 cites W2035261318 @default.
- W3094320922 cites W2035358673 @default.
- W3094320922 cites W2037918173 @default.
- W3094320922 cites W2043398946 @default.
- W3094320922 cites W2045314411 @default.
- W3094320922 cites W2045745277 @default.
- W3094320922 cites W2048782081 @default.
- W3094320922 cites W2050072212 @default.
- W3094320922 cites W2052167135 @default.
- W3094320922 cites W2052180202 @default.
- W3094320922 cites W2057756029 @default.
- W3094320922 cites W2068519766 @default.
- W3094320922 cites W2082194450 @default.
- W3094320922 cites W2085408956 @default.
- W3094320922 cites W2085497225 @default.
- W3094320922 cites W2092685533 @default.
- W3094320922 cites W2093290760 @default.
- W3094320922 cites W2102070581 @default.
- W3094320922 cites W2105732570 @default.
- W3094320922 cites W2111115691 @default.
- W3094320922 cites W2114746602 @default.
- W3094320922 cites W2114977008 @default.
- W3094320922 cites W2135961695 @default.
- W3094320922 cites W2141881677 @default.
- W3094320922 cites W2142047030 @default.
- W3094320922 cites W2142239323 @default.
- W3094320922 cites W2148073157 @default.
- W3094320922 cites W2154053567 @default.
- W3094320922 cites W2159796396 @default.
- W3094320922 cites W2558972048 @default.
- W3094320922 cites W2582776368 @default.
- W3094320922 cites W2592540987 @default.
- W3094320922 cites W2609962336 @default.
- W3094320922 cites W2782544649 @default.
- W3094320922 cites W2793079288 @default.
- W3094320922 cites W2802719250 @default.
- W3094320922 cites W2889555801 @default.
- W3094320922 cites W2900150378 @default.
- W3094320922 cites W2922741724 @default.
- W3094320922 cites W2954831388 @default.
- W3094320922 cites W2966942628 @default.
- W3094320922 cites W2974244011 @default.
- W3094320922 cites W2999244446 @default.
- W3094320922 cites W4250560321 @default.
- W3094320922 cites W4294214781 @default.
- W3094320922 cites W80252143 @default.
- W3094320922 cites W83828064 @default.
- W3094320922 cites W869630849 @default.
- W3094320922 doi "https://doi.org/10.1016/j.heares.2020.108101" @default.
- W3094320922 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33142106" @default.
- W3094320922 hasPublicationYear "2020" @default.
- W3094320922 type Work @default.
- W3094320922 sameAs 3094320922 @default.
- W3094320922 citedByCount "4" @default.
- W3094320922 countsByYear W30943209222021 @default.
- W3094320922 countsByYear W30943209222022 @default.
- W3094320922 countsByYear W30943209222023 @default.
- W3094320922 crossrefType "journal-article" @default.
- W3094320922 hasAuthorship W3094320922A5002580793 @default.
- W3094320922 hasAuthorship W3094320922A5022643612 @default.