Matches in SemOpenAlex for { <https://semopenalex.org/work/W3094341071> ?p ?o ?g. }
- W3094341071 endingPage "129090" @default.
- W3094341071 startingPage "129090" @default.
- W3094341071 abstract "In this work, a sensor array comprised four sensors has been employed to detect 11 types of mixtures of nitrogen dioxide (NO2) and carbon monoxide (CO), with concentration varying from 0 to 50 ppm. To reduce the effect of sensor noise and ensure high recognition accuracy, average resistance over a period of time was introduced. Then, 12 features including response value, response time and recovery time were extracted from each sample. After that, C-means clustering and back propagation neural network (BPNN) were performed to identify various gases, with classification accuracy of 94.55 % and 100 %, respectively. Genetic algorithm (GA) was also employed to further improve BPNN’s performance. Moreover, a random variable substitution method has been introduced to study which feature of the input sample influence the BPNN model most. Through gray processing, dynamic curves have been transformed into gray images, from which convolutional neural network (CNN) was introduced to automatically extract high-level features, and an identification accuracy of 100 % has been realized. Finally, experiments for sensing gas mixtures of CO and NO2 under various humidity levels have been done to test the impact of humidity on the sensor array. The results demonstrated the proposed method could eliminate the effects of humidity." @default.
- W3094341071 created "2020-10-29" @default.
- W3094341071 creator A5006669450 @default.
- W3094341071 creator A5009790177 @default.
- W3094341071 creator A5013673751 @default.
- W3094341071 creator A5014618337 @default.
- W3094341071 creator A5016996807 @default.
- W3094341071 creator A5028858301 @default.
- W3094341071 creator A5037467440 @default.
- W3094341071 creator A5079037257 @default.
- W3094341071 creator A5079607587 @default.
- W3094341071 creator A5083369178 @default.
- W3094341071 date "2021-02-01" @default.
- W3094341071 modified "2023-10-14" @default.
- W3094341071 title "Identification of gas mixtures via sensor array combining with neural networks" @default.
- W3094341071 cites W1584393767 @default.
- W3094341071 cites W1968104065 @default.
- W3094341071 cites W1974364887 @default.
- W3094341071 cites W1976969165 @default.
- W3094341071 cites W1977204042 @default.
- W3094341071 cites W1986019970 @default.
- W3094341071 cites W1987905966 @default.
- W3094341071 cites W2000598173 @default.
- W3094341071 cites W2005567433 @default.
- W3094341071 cites W2020666686 @default.
- W3094341071 cites W2028161486 @default.
- W3094341071 cites W2031238742 @default.
- W3094341071 cites W2033882862 @default.
- W3094341071 cites W2040671250 @default.
- W3094341071 cites W2040698516 @default.
- W3094341071 cites W2051733998 @default.
- W3094341071 cites W2066931188 @default.
- W3094341071 cites W2081588678 @default.
- W3094341071 cites W2089664478 @default.
- W3094341071 cites W2127722169 @default.
- W3094341071 cites W2291443726 @default.
- W3094341071 cites W2507312381 @default.
- W3094341071 cites W2508057195 @default.
- W3094341071 cites W2508457857 @default.
- W3094341071 cites W2531207741 @default.
- W3094341071 cites W2572716498 @default.
- W3094341071 cites W2607040660 @default.
- W3094341071 cites W2607441769 @default.
- W3094341071 cites W2618530766 @default.
- W3094341071 cites W2620898306 @default.
- W3094341071 cites W2625544367 @default.
- W3094341071 cites W2747381502 @default.
- W3094341071 cites W2768355925 @default.
- W3094341071 cites W2783165089 @default.
- W3094341071 cites W2783662494 @default.
- W3094341071 cites W2785580667 @default.
- W3094341071 cites W2789930058 @default.
- W3094341071 cites W2803520030 @default.
- W3094341071 cites W2884444414 @default.
- W3094341071 cites W2904463781 @default.
- W3094341071 cites W2908662075 @default.
- W3094341071 cites W2919115771 @default.
- W3094341071 cites W2988155509 @default.
- W3094341071 cites W69295336 @default.
- W3094341071 cites W2019498668 @default.
- W3094341071 doi "https://doi.org/10.1016/j.snb.2020.129090" @default.
- W3094341071 hasPublicationYear "2021" @default.
- W3094341071 type Work @default.
- W3094341071 sameAs 3094341071 @default.
- W3094341071 citedByCount "83" @default.
- W3094341071 countsByYear W30943410712021 @default.
- W3094341071 countsByYear W30943410712022 @default.
- W3094341071 countsByYear W30943410712023 @default.
- W3094341071 crossrefType "journal-article" @default.
- W3094341071 hasAuthorship W3094341071A5006669450 @default.
- W3094341071 hasAuthorship W3094341071A5009790177 @default.
- W3094341071 hasAuthorship W3094341071A5013673751 @default.
- W3094341071 hasAuthorship W3094341071A5014618337 @default.
- W3094341071 hasAuthorship W3094341071A5016996807 @default.
- W3094341071 hasAuthorship W3094341071A5028858301 @default.
- W3094341071 hasAuthorship W3094341071A5037467440 @default.
- W3094341071 hasAuthorship W3094341071A5079037257 @default.
- W3094341071 hasAuthorship W3094341071A5079607587 @default.
- W3094341071 hasAuthorship W3094341071A5083369178 @default.
- W3094341071 hasConcept C119857082 @default.
- W3094341071 hasConcept C121332964 @default.
- W3094341071 hasConcept C151420433 @default.
- W3094341071 hasConcept C153180895 @default.
- W3094341071 hasConcept C154945302 @default.
- W3094341071 hasConcept C155032097 @default.
- W3094341071 hasConcept C186060115 @default.
- W3094341071 hasConcept C41008148 @default.
- W3094341071 hasConcept C50644808 @default.
- W3094341071 hasConcept C66251956 @default.
- W3094341071 hasConcept C81363708 @default.
- W3094341071 hasConcept C86803240 @default.
- W3094341071 hasConcept C97355855 @default.
- W3094341071 hasConceptScore W3094341071C119857082 @default.
- W3094341071 hasConceptScore W3094341071C121332964 @default.
- W3094341071 hasConceptScore W3094341071C151420433 @default.
- W3094341071 hasConceptScore W3094341071C153180895 @default.
- W3094341071 hasConceptScore W3094341071C154945302 @default.
- W3094341071 hasConceptScore W3094341071C155032097 @default.