Matches in SemOpenAlex for { <https://semopenalex.org/work/W3094346572> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W3094346572 endingPage "102085" @default.
- W3094346572 startingPage "102085" @default.
- W3094346572 abstract "Abstract Anomalous connected subgraph detection has been widely used in multiple scenarios, such as botnet detection, fraud detection and event detection. Nevertheless, the huge search space makes a serious computational challenge. Moreover, the anomalous connected subgraph detection becomes much harder when the networks involve a large number of attributes and become the multi-attributed networks. With the multi-attributed characteristic, most existing approaches are unable to solve this problem effectively and efficiently since it involves the anomalous connected subgraph detection and attributes selection simultaneously. In view of this, this paper proposes a general framework, namely multi-attributed anomalous subgraphs and attributes scanning (MASA), to solve this problem in multi-attributed networks. We formulate and optimize a great number of complicated nonparametric scan statistic functions that are employed to measure the joint anomalousness of the connected subgraphs and the corresponding subset of attributes in multi-attributed networks. More specifically, we first propose to transform each formulated nonparametric scan statistic function into a set of sub-functions with the theoretical analysis. Then using techniques of the tree approximation priors and the dynamic algorithms, an efficient approximation algorithm is presented to solve each transformed sub-function. Finally, with three real-world datasets from different domains, we conduct extensive experimental evaluations to demonstrate the effectiveness and efficiency of the proposed approach." @default.
- W3094346572 created "2020-10-29" @default.
- W3094346572 creator A5010088895 @default.
- W3094346572 creator A5028762600 @default.
- W3094346572 creator A5038832637 @default.
- W3094346572 creator A5062771971 @default.
- W3094346572 creator A5070659482 @default.
- W3094346572 date "2021-03-01" @default.
- W3094346572 modified "2023-09-24" @default.
- W3094346572 title "MASA: An efficient framework for anomaly detection in multi-attributed networks" @default.
- W3094346572 cites W1970768703 @default.
- W3094346572 cites W1974169660 @default.
- W3094346572 cites W1981106668 @default.
- W3094346572 cites W2075752400 @default.
- W3094346572 cites W2094990982 @default.
- W3094346572 cites W2135810626 @default.
- W3094346572 cites W2142889610 @default.
- W3094346572 cites W2161521785 @default.
- W3094346572 cites W2209663295 @default.
- W3094346572 cites W2274363807 @default.
- W3094346572 cites W2794359421 @default.
- W3094346572 cites W2889098690 @default.
- W3094346572 cites W2942550645 @default.
- W3094346572 cites W2398361527 @default.
- W3094346572 doi "https://doi.org/10.1016/j.cose.2020.102085" @default.
- W3094346572 hasPublicationYear "2021" @default.
- W3094346572 type Work @default.
- W3094346572 sameAs 3094346572 @default.
- W3094346572 citedByCount "2" @default.
- W3094346572 countsByYear W30943465722022 @default.
- W3094346572 crossrefType "journal-article" @default.
- W3094346572 hasAuthorship W3094346572A5010088895 @default.
- W3094346572 hasAuthorship W3094346572A5028762600 @default.
- W3094346572 hasAuthorship W3094346572A5038832637 @default.
- W3094346572 hasAuthorship W3094346572A5062771971 @default.
- W3094346572 hasAuthorship W3094346572A5070659482 @default.
- W3094346572 hasConcept C121332964 @default.
- W3094346572 hasConcept C124101348 @default.
- W3094346572 hasConcept C12997251 @default.
- W3094346572 hasConcept C26873012 @default.
- W3094346572 hasConcept C41008148 @default.
- W3094346572 hasConcept C739882 @default.
- W3094346572 hasConceptScore W3094346572C121332964 @default.
- W3094346572 hasConceptScore W3094346572C124101348 @default.
- W3094346572 hasConceptScore W3094346572C12997251 @default.
- W3094346572 hasConceptScore W3094346572C26873012 @default.
- W3094346572 hasConceptScore W3094346572C41008148 @default.
- W3094346572 hasConceptScore W3094346572C739882 @default.
- W3094346572 hasLocation W30943465721 @default.
- W3094346572 hasOpenAccess W3094346572 @default.
- W3094346572 hasPrimaryLocation W30943465721 @default.
- W3094346572 hasRelatedWork W2042251007 @default.
- W3094346572 hasRelatedWork W2063729131 @default.
- W3094346572 hasRelatedWork W2110365568 @default.
- W3094346572 hasRelatedWork W2372557666 @default.
- W3094346572 hasRelatedWork W2391943197 @default.
- W3094346572 hasRelatedWork W2984111956 @default.
- W3094346572 hasRelatedWork W3120333185 @default.
- W3094346572 hasRelatedWork W4229021642 @default.
- W3094346572 hasRelatedWork W4366152651 @default.
- W3094346572 hasRelatedWork W2130317780 @default.
- W3094346572 hasVolume "102" @default.
- W3094346572 isParatext "false" @default.
- W3094346572 isRetracted "false" @default.
- W3094346572 magId "3094346572" @default.
- W3094346572 workType "article" @default.