Matches in SemOpenAlex for { <https://semopenalex.org/work/W3094388775> ?p ?o ?g. }
- W3094388775 endingPage "117918" @default.
- W3094388775 startingPage "117918" @default.
- W3094388775 abstract "Abstract Low-pollution water treatment is an important process for improving surface water quality. In the present study, a denitrification biological filter (DNBF) was used to treat synthetic low-pollution water, representing the typical water present in a heavily polluted urban seasonal river. The feasibility of alkali treated corncob as a denitrification slow-release carbon source was investigated. Furthermore, the performance of DNBF with different media (ceramsite, quartz sand and polypropylene plastics) and operating conditions was studied. The DNBF denitrification mechanism was analyzed and an artificial neural network model was established to predict the water quality of DNBF treated low-pollution water effluent. Results showed that when the alkali treated corncob dosage was 20 g and hydraulic retention time (HRT) was 2 h, the denitrification efficiency of DNBF with ceramsite as the filter medium was highest (≥94.7% for nitrate nitrogen and ≥ 85.6% for total nitrogen), with the effluent total nitrogen concentration meeting Class IV of the Environmental Quality Standard for Surface Water (GB 3838-2002, China). The total nitrogen removal efficiency increased with increasing HRT (0.5–2.0 h) and alkali treated corncob dosage (0–20 g). The denitrification rates established for DNBF with different media were ranked in the following order: ceramsite medium DNBF > polypropylene plastic medium DNBF > quartz sand medium DNBF. The relative abundance of denitrifying bacteria was highest (10.07% for quartz sand medium DNBF, 13.92% for polypropylene plastic medium DNBF and 23.13% for ceramsite medium DNBF) in the lower layer of the DNBFs, indicating that denitrifying bacteria are concentrated in the lower layer of the up-flow DNBF. Environmental factors (nitrite nitrogen, nitrate nitrogen, water temperature and pH) were found to affect the DNBF microbial community structure. The established artificial neural network model accurately predicted the effluent nitrogen concentration in DNBF treated low-pollution water. DNBF provides a feasible system for the treatment of heavily polluted urban seasonal rivers, achieving high total nitrogen removal efficiency using a low cost and easy operation method." @default.
- W3094388775 created "2020-10-29" @default.
- W3094388775 creator A5008692799 @default.
- W3094388775 creator A5020769177 @default.
- W3094388775 creator A5025233109 @default.
- W3094388775 creator A5040589149 @default.
- W3094388775 creator A5054825546 @default.
- W3094388775 creator A5055758842 @default.
- W3094388775 creator A5059345876 @default.
- W3094388775 creator A5063673400 @default.
- W3094388775 creator A5090872665 @default.
- W3094388775 date "2021-02-01" @default.
- W3094388775 modified "2023-10-16" @default.
- W3094388775 title "Denitrification mechanism and artificial neural networks modeling for low-pollution water purification using a denitrification biological filter process" @default.
- W3094388775 cites W1970463643 @default.
- W3094388775 cites W1976325625 @default.
- W3094388775 cites W1978717493 @default.
- W3094388775 cites W2025343667 @default.
- W3094388775 cites W2029299269 @default.
- W3094388775 cites W2039083873 @default.
- W3094388775 cites W2049206176 @default.
- W3094388775 cites W2050988750 @default.
- W3094388775 cites W2066283585 @default.
- W3094388775 cites W2081439831 @default.
- W3094388775 cites W2124783673 @default.
- W3094388775 cites W2163060733 @default.
- W3094388775 cites W2171575024 @default.
- W3094388775 cites W2187075936 @default.
- W3094388775 cites W2268956130 @default.
- W3094388775 cites W2314380596 @default.
- W3094388775 cites W2328448468 @default.
- W3094388775 cites W2344208351 @default.
- W3094388775 cites W2345463594 @default.
- W3094388775 cites W2413982009 @default.
- W3094388775 cites W2418014268 @default.
- W3094388775 cites W2467757206 @default.
- W3094388775 cites W2565004885 @default.
- W3094388775 cites W2568491410 @default.
- W3094388775 cites W2590238964 @default.
- W3094388775 cites W2746331926 @default.
- W3094388775 cites W2756820041 @default.
- W3094388775 cites W2769045632 @default.
- W3094388775 cites W2779819885 @default.
- W3094388775 cites W2783042138 @default.
- W3094388775 cites W2784061464 @default.
- W3094388775 cites W2789570371 @default.
- W3094388775 cites W2790108692 @default.
- W3094388775 cites W2791808055 @default.
- W3094388775 cites W2793630042 @default.
- W3094388775 cites W2794275025 @default.
- W3094388775 cites W2796379173 @default.
- W3094388775 cites W2800259351 @default.
- W3094388775 cites W2894252318 @default.
- W3094388775 cites W2898337863 @default.
- W3094388775 cites W2939170435 @default.
- W3094388775 cites W2944246911 @default.
- W3094388775 cites W2955054036 @default.
- W3094388775 cites W2955063829 @default.
- W3094388775 cites W2955877675 @default.
- W3094388775 cites W2956060825 @default.
- W3094388775 cites W2960953189 @default.
- W3094388775 cites W2964935023 @default.
- W3094388775 cites W2965418543 @default.
- W3094388775 cites W2969675372 @default.
- W3094388775 cites W2970623214 @default.
- W3094388775 cites W2997712594 @default.
- W3094388775 cites W2998668704 @default.
- W3094388775 cites W3007212922 @default.
- W3094388775 cites W3010964251 @default.
- W3094388775 cites W3014460925 @default.
- W3094388775 cites W3022234093 @default.
- W3094388775 cites W3023150171 @default.
- W3094388775 cites W3024607052 @default.
- W3094388775 cites W3026959968 @default.
- W3094388775 cites W3033625656 @default.
- W3094388775 cites W3034880110 @default.
- W3094388775 cites W3035278032 @default.
- W3094388775 cites W3036433633 @default.
- W3094388775 cites W3044619894 @default.
- W3094388775 doi "https://doi.org/10.1016/j.seppur.2020.117918" @default.
- W3094388775 hasPublicationYear "2021" @default.
- W3094388775 type Work @default.
- W3094388775 sameAs 3094388775 @default.
- W3094388775 citedByCount "16" @default.
- W3094388775 countsByYear W30943887752021 @default.
- W3094388775 countsByYear W30943887752022 @default.
- W3094388775 countsByYear W30943887752023 @default.
- W3094388775 crossrefType "journal-article" @default.
- W3094388775 hasAuthorship W3094388775A5008692799 @default.
- W3094388775 hasAuthorship W3094388775A5020769177 @default.
- W3094388775 hasAuthorship W3094388775A5025233109 @default.
- W3094388775 hasAuthorship W3094388775A5040589149 @default.
- W3094388775 hasAuthorship W3094388775A5054825546 @default.
- W3094388775 hasAuthorship W3094388775A5055758842 @default.
- W3094388775 hasAuthorship W3094388775A5059345876 @default.
- W3094388775 hasAuthorship W3094388775A5063673400 @default.
- W3094388775 hasAuthorship W3094388775A5090872665 @default.
- W3094388775 hasConcept C106131492 @default.