Matches in SemOpenAlex for { <https://semopenalex.org/work/W3094402521> ?p ?o ?g. }
- W3094402521 endingPage "124369" @default.
- W3094402521 startingPage "124369" @default.
- W3094402521 abstract "This study was set up to model and optimize the performance and emission characteristics of a diesel engine fueled with carbon nanoparticle-dosed water/diesel emulsion fuel using a combination of soft computing techniques. Adaptive neuro-fuzzy inference system tuned by particle swarm algorithm was used for modeling the performance and emission parameters of the engine, while optimization of the engine operating parameters and the fuel composition was conducted via multiple-objective particle swarm algorithm. The model input variables were: injection timing (35–41° CA BTDC), engine load (0–100%), nanoparticle dosage (0–150 μM), and water content (0–3 wt%). The model output variables included: brake specific fuel consumption, brake thermal efficiency, as well as carbon monoxide, carbon dioxide, nitrogen oxides, and unburned hydrocarbons emission concentrations. The training and testing of the modeling system were performed on the basis of 60 data patterns obtained from the experimental trials. The effects of input variables on the performance and emission characteristics of the engine were thoroughly analyzed and comprehensively discussed as well. According to the experimental results, injection timing and engine load could significantly affect all the investigated performance and emission parameters. Water and nanoparticle addition to diesel could markedly affect some performance and emission parameters. The modeling system could predict the output parameters with an R 2 > 0.93, MSE < 5.70 × 10 −3 , RMSE < 7.55 × 10 −2 , and MAPE < 3.86 × 10 −2 . The optimum conditions were: injection timing of 39° CA BTDC, engine load of 74%, nanoparticle dosage of 112 μM, and water content of 2.49 wt%. The carbon dioxide, carbon monoxide, nitrogen oxides, and unburned hydrocarbon emission concentrations were found to be 7.26 vol%, 0.46 vol%, 95.7 ppm, and 36.2 ppm, respectively, under the selected optimal operating conditions while the quantity of brake thermal efficiency was found at an acceptable level (34.0%). In general, the applied soft computing combination appears to be a promising approach to model and optimize operating parameters and fuel composition of diesel engines. • A diesel engine was fueled with carbon nanoparticle-dosed water/diesel emulsions. • Water addition to diesel mitigated unburned hydrocarbon emissions at moderate load. • Nanoparticle addition to diesel diminished nitrogen oxides formation at moderate load. • The developed neuro-fuzzy model successfully predicted the output variables. • The particle swarm method optimized engine operating conditions and fuel composition." @default.
- W3094402521 created "2020-10-29" @default.
- W3094402521 creator A5001983933 @default.
- W3094402521 creator A5014159895 @default.
- W3094402521 creator A5018975442 @default.
- W3094402521 creator A5020359320 @default.
- W3094402521 creator A5023407956 @default.
- W3094402521 creator A5023831187 @default.
- W3094402521 creator A5028263792 @default.
- W3094402521 creator A5031010143 @default.
- W3094402521 creator A5039765785 @default.
- W3094402521 creator A5049101903 @default.
- W3094402521 creator A5062767553 @default.
- W3094402521 creator A5066890029 @default.
- W3094402521 creator A5070779972 @default.
- W3094402521 creator A5075499540 @default.
- W3094402521 date "2021-04-01" @default.
- W3094402521 modified "2023-10-06" @default.
- W3094402521 title "Soft computing-based modeling and emission control/reduction of a diesel engine fueled with carbon nanoparticle-dosed water/diesel emulsion fuel" @default.
- W3094402521 cites W1193834198 @default.
- W3094402521 cites W1498491036 @default.
- W3094402521 cites W1970006206 @default.
- W3094402521 cites W1973280059 @default.
- W3094402521 cites W1978291249 @default.
- W3094402521 cites W1979249069 @default.
- W3094402521 cites W1989073239 @default.
- W3094402521 cites W1989089969 @default.
- W3094402521 cites W1989139646 @default.
- W3094402521 cites W1989341655 @default.
- W3094402521 cites W1995374559 @default.
- W3094402521 cites W2003279902 @default.
- W3094402521 cites W2004753904 @default.
- W3094402521 cites W2007198788 @default.
- W3094402521 cites W2008115502 @default.
- W3094402521 cites W2008454229 @default.
- W3094402521 cites W2010700043 @default.
- W3094402521 cites W2016891521 @default.
- W3094402521 cites W2018497666 @default.
- W3094402521 cites W2018791698 @default.
- W3094402521 cites W2019207321 @default.
- W3094402521 cites W2020144821 @default.
- W3094402521 cites W2023105389 @default.
- W3094402521 cites W2024084054 @default.
- W3094402521 cites W2027332439 @default.
- W3094402521 cites W2028578827 @default.
- W3094402521 cites W2033757688 @default.
- W3094402521 cites W2042158367 @default.
- W3094402521 cites W2049299980 @default.
- W3094402521 cites W2050375362 @default.
- W3094402521 cites W2050984036 @default.
- W3094402521 cites W2051886914 @default.
- W3094402521 cites W2053427228 @default.
- W3094402521 cites W2057368589 @default.
- W3094402521 cites W2058342627 @default.
- W3094402521 cites W2065655100 @default.
- W3094402521 cites W2066247543 @default.
- W3094402521 cites W2072497328 @default.
- W3094402521 cites W2073236513 @default.
- W3094402521 cites W2076313937 @default.
- W3094402521 cites W2076943742 @default.
- W3094402521 cites W2081642574 @default.
- W3094402521 cites W2084183247 @default.
- W3094402521 cites W2086227369 @default.
- W3094402521 cites W2087622678 @default.
- W3094402521 cites W2089002983 @default.
- W3094402521 cites W2089156134 @default.
- W3094402521 cites W2089729216 @default.
- W3094402521 cites W2093202053 @default.
- W3094402521 cites W2093344446 @default.
- W3094402521 cites W2093882645 @default.
- W3094402521 cites W2103210148 @default.
- W3094402521 cites W2108073581 @default.
- W3094402521 cites W2111293900 @default.
- W3094402521 cites W2116428264 @default.
- W3094402521 cites W2138956790 @default.
- W3094402521 cites W2148498708 @default.
- W3094402521 cites W2158543807 @default.
- W3094402521 cites W2165171393 @default.
- W3094402521 cites W2171251685 @default.
- W3094402521 cites W2178484240 @default.
- W3094402521 cites W2237042233 @default.
- W3094402521 cites W2279994508 @default.
- W3094402521 cites W2293478997 @default.
- W3094402521 cites W2338579254 @default.
- W3094402521 cites W2521368358 @default.
- W3094402521 cites W2546668794 @default.
- W3094402521 cites W2557952453 @default.
- W3094402521 cites W2559394837 @default.
- W3094402521 cites W2560640001 @default.
- W3094402521 cites W2570355709 @default.
- W3094402521 cites W2589501709 @default.
- W3094402521 cites W2592697816 @default.
- W3094402521 cites W2595466692 @default.
- W3094402521 cites W2606414783 @default.
- W3094402521 cites W2612509807 @default.
- W3094402521 cites W2616127543 @default.
- W3094402521 cites W2618713064 @default.
- W3094402521 cites W2742161468 @default.