Matches in SemOpenAlex for { <https://semopenalex.org/work/W3094481653> ?p ?o ?g. }
- W3094481653 abstract "The development of smart grids and worldwide spread of smart meters enable a great opportunity to develop the demand-side management. How to apply the analysis of household smart meter data to improve energy efficiency and implement demand response schemes has become a new hot field. This paper presents an overview of the literature on the most recent methods of smart meter data clustering analysis. Mainly includes the latest applications of hierarchical, k-means clustering, self-organizing maps, principal and components analysis and other algorithms in smart meter data analysis. Furthermore, this paper reviews the application of smart meter data analysis in demand response potential estimation and candidate selection, the action analysis and scheme management of demand response. Through the literature review, we find the crucial points in the existing literature. Due to the characteristics of data, data feature extraction and form conversion are required before clustering. To ensure the effectiveness of demand response schemes, power companies need to overcome the random characteristics of users and conduct various feasibility studies around customers. Through a comprehensive review in this paper, we believe that with the solution of these crucial points, the application of smart meter data will have broad prospects." @default.
- W3094481653 created "2020-10-29" @default.
- W3094481653 creator A5005736265 @default.
- W3094481653 creator A5021918980 @default.
- W3094481653 creator A5024187961 @default.
- W3094481653 creator A5070501452 @default.
- W3094481653 creator A5078857016 @default.
- W3094481653 creator A5081416018 @default.
- W3094481653 date "2020-09-01" @default.
- W3094481653 modified "2023-10-14" @default.
- W3094481653 title "Review on Smart Meter Data Clustering and Demand Response Analytics" @default.
- W3094481653 cites W1517234786 @default.
- W3094481653 cites W1957571245 @default.
- W3094481653 cites W1963762221 @default.
- W3094481653 cites W1967831571 @default.
- W3094481653 cites W1975404935 @default.
- W3094481653 cites W1981510168 @default.
- W3094481653 cites W1985573826 @default.
- W3094481653 cites W1986641840 @default.
- W3094481653 cites W1989866797 @default.
- W3094481653 cites W1993562150 @default.
- W3094481653 cites W1997729648 @default.
- W3094481653 cites W2000813736 @default.
- W3094481653 cites W2003399840 @default.
- W3094481653 cites W2004578488 @default.
- W3094481653 cites W2009775084 @default.
- W3094481653 cites W2020879012 @default.
- W3094481653 cites W2021619480 @default.
- W3094481653 cites W2028218718 @default.
- W3094481653 cites W2049461138 @default.
- W3094481653 cites W2051659868 @default.
- W3094481653 cites W2062548928 @default.
- W3094481653 cites W2066821980 @default.
- W3094481653 cites W2076335823 @default.
- W3094481653 cites W2079249274 @default.
- W3094481653 cites W2079697937 @default.
- W3094481653 cites W2090397703 @default.
- W3094481653 cites W2092234783 @default.
- W3094481653 cites W2095441031 @default.
- W3094481653 cites W2099896773 @default.
- W3094481653 cites W2112987107 @default.
- W3094481653 cites W2130608062 @default.
- W3094481653 cites W2151117739 @default.
- W3094481653 cites W2151767444 @default.
- W3094481653 cites W2155556726 @default.
- W3094481653 cites W2160655348 @default.
- W3094481653 cites W2168285483 @default.
- W3094481653 cites W2175265826 @default.
- W3094481653 cites W2209508536 @default.
- W3094481653 cites W2281985329 @default.
- W3094481653 cites W2312446965 @default.
- W3094481653 cites W2359128991 @default.
- W3094481653 cites W2553165053 @default.
- W3094481653 cites W2555340976 @default.
- W3094481653 cites W2625318752 @default.
- W3094481653 cites W2697346439 @default.
- W3094481653 cites W2765270426 @default.
- W3094481653 cites W2893915728 @default.
- W3094481653 cites W2907653397 @default.
- W3094481653 cites W2918690321 @default.
- W3094481653 cites W2922154695 @default.
- W3094481653 cites W2972029745 @default.
- W3094481653 doi "https://doi.org/10.1109/appeec48164.2020.9220376" @default.
- W3094481653 hasPublicationYear "2020" @default.
- W3094481653 type Work @default.
- W3094481653 sameAs 3094481653 @default.
- W3094481653 citedByCount "1" @default.
- W3094481653 countsByYear W30944816532022 @default.
- W3094481653 crossrefType "proceedings-article" @default.
- W3094481653 hasAuthorship W3094481653A5005736265 @default.
- W3094481653 hasAuthorship W3094481653A5021918980 @default.
- W3094481653 hasAuthorship W3094481653A5024187961 @default.
- W3094481653 hasAuthorship W3094481653A5070501452 @default.
- W3094481653 hasAuthorship W3094481653A5078857016 @default.
- W3094481653 hasAuthorship W3094481653A5081416018 @default.
- W3094481653 hasConcept C10558101 @default.
- W3094481653 hasConcept C119599485 @default.
- W3094481653 hasConcept C119857082 @default.
- W3094481653 hasConcept C124101348 @default.
- W3094481653 hasConcept C127413603 @default.
- W3094481653 hasConcept C175801342 @default.
- W3094481653 hasConcept C202444582 @default.
- W3094481653 hasConcept C206658404 @default.
- W3094481653 hasConcept C2522767166 @default.
- W3094481653 hasConcept C2779438525 @default.
- W3094481653 hasConcept C2779510800 @default.
- W3094481653 hasConcept C33923547 @default.
- W3094481653 hasConcept C41008148 @default.
- W3094481653 hasConcept C73555534 @default.
- W3094481653 hasConcept C75684735 @default.
- W3094481653 hasConcept C92835128 @default.
- W3094481653 hasConcept C9652623 @default.
- W3094481653 hasConceptScore W3094481653C10558101 @default.
- W3094481653 hasConceptScore W3094481653C119599485 @default.
- W3094481653 hasConceptScore W3094481653C119857082 @default.
- W3094481653 hasConceptScore W3094481653C124101348 @default.
- W3094481653 hasConceptScore W3094481653C127413603 @default.
- W3094481653 hasConceptScore W3094481653C175801342 @default.
- W3094481653 hasConceptScore W3094481653C202444582 @default.
- W3094481653 hasConceptScore W3094481653C206658404 @default.