Matches in SemOpenAlex for { <https://semopenalex.org/work/W3094484482> ?p ?o ?g. }
- W3094484482 endingPage "761" @default.
- W3094484482 startingPage "747" @default.
- W3094484482 abstract "The problem of effectively exploiting the information multiple data sources has become a relevant but challenging research topic in remote sensing. In this article, we propose a new approach to exploit the complementarity of two data sources: hyperspectral images (HSIs) and light detection and ranging (LiDAR) data. Specifically, we develop a new dual-channel spatial, spectral and multiscale attention convolutional long short-term memory neural network (called dual-channel A3 CLNN) for feature extraction and classification of multisource remote sensing data. Spatial, spectral, and multiscale attention mechanisms are first designed for HSI and LiDAR data in order to learn spectral- and spatial-enhanced feature representations and to represent multiscale information for different classes. In the designed fusion network, a novel composite attention learning mechanism (combined with a three-level fusion strategy) is used to fully integrate the features in these two data sources. Finally, inspired by the idea of transfer learning, a novel stepwise training strategy is designed to yield a final classification result. Our experimental results, conducted on several multisource remote sensing data sets, demonstrate that the newly proposed dual-channel A 3 CLNN exhibits better feature representation ability (leading to more competitive classification performance) than other state-of-the-art methods." @default.
- W3094484482 created "2020-10-29" @default.
- W3094484482 creator A5000432967 @default.
- W3094484482 creator A5015155189 @default.
- W3094484482 creator A5027835055 @default.
- W3094484482 creator A5033017179 @default.
- W3094484482 creator A5054292278 @default.
- W3094484482 creator A5067999166 @default.
- W3094484482 date "2022-02-01" @default.
- W3094484482 modified "2023-10-16" @default.
- W3094484482 title "A<sup>3</sup> CLNN: Spatial, Spectral and Multiscale Attention ConvLSTM Neural Network for Multisource Remote Sensing Data Classification" @default.
- W3094484482 cites W1497089125 @default.
- W3094484482 cites W1521436688 @default.
- W3094484482 cites W2008847349 @default.
- W3094484482 cites W2011085793 @default.
- W3094484482 cites W2012838735 @default.
- W3094484482 cites W2022773386 @default.
- W3094484482 cites W2038386419 @default.
- W3094484482 cites W2064675550 @default.
- W3094484482 cites W2067874135 @default.
- W3094484482 cites W2087263574 @default.
- W3094484482 cites W2097117768 @default.
- W3094484482 cites W2122585011 @default.
- W3094484482 cites W2152057649 @default.
- W3094484482 cites W2152233525 @default.
- W3094484482 cites W2314785379 @default.
- W3094484482 cites W2320846209 @default.
- W3094484482 cites W2346557146 @default.
- W3094484482 cites W2500751094 @default.
- W3094484482 cites W2548791488 @default.
- W3094484482 cites W2550553598 @default.
- W3094484482 cites W2600746131 @default.
- W3094484482 cites W2602024454 @default.
- W3094484482 cites W2606929568 @default.
- W3094484482 cites W2738447277 @default.
- W3094484482 cites W2752782242 @default.
- W3094484482 cites W2765739551 @default.
- W3094484482 cites W2768537477 @default.
- W3094484482 cites W2781621993 @default.
- W3094484482 cites W2792827505 @default.
- W3094484482 cites W2811355488 @default.
- W3094484482 cites W2888715336 @default.
- W3094484482 cites W2890133123 @default.
- W3094484482 cites W2890732922 @default.
- W3094484482 cites W2898682679 @default.
- W3094484482 cites W2900587135 @default.
- W3094484482 cites W2901117552 @default.
- W3094484482 cites W2913939882 @default.
- W3094484482 cites W2914959431 @default.
- W3094484482 cites W2936222941 @default.
- W3094484482 cites W2937615289 @default.
- W3094484482 cites W2950266692 @default.
- W3094484482 cites W2951454267 @default.
- W3094484482 cites W2961699889 @default.
- W3094484482 cites W2963495494 @default.
- W3094484482 cites W2969393175 @default.
- W3094484482 cites W2999446243 @default.
- W3094484482 cites W3004480865 @default.
- W3094484482 cites W3101640299 @default.
- W3094484482 cites W4240485910 @default.
- W3094484482 doi "https://doi.org/10.1109/tnnls.2020.3028945" @default.
- W3094484482 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33085622" @default.
- W3094484482 hasPublicationYear "2022" @default.
- W3094484482 type Work @default.
- W3094484482 sameAs 3094484482 @default.
- W3094484482 citedByCount "45" @default.
- W3094484482 countsByYear W30944844822021 @default.
- W3094484482 countsByYear W30944844822022 @default.
- W3094484482 countsByYear W30944844822023 @default.
- W3094484482 crossrefType "journal-article" @default.
- W3094484482 hasAuthorship W3094484482A5000432967 @default.
- W3094484482 hasAuthorship W3094484482A5015155189 @default.
- W3094484482 hasAuthorship W3094484482A5027835055 @default.
- W3094484482 hasAuthorship W3094484482A5033017179 @default.
- W3094484482 hasAuthorship W3094484482A5054292278 @default.
- W3094484482 hasAuthorship W3094484482A5067999166 @default.
- W3094484482 hasBestOaLocation W30944844822 @default.
- W3094484482 hasConcept C124952713 @default.
- W3094484482 hasConcept C138885662 @default.
- W3094484482 hasConcept C142362112 @default.
- W3094484482 hasConcept C150899416 @default.
- W3094484482 hasConcept C153180895 @default.
- W3094484482 hasConcept C154945302 @default.
- W3094484482 hasConcept C159078339 @default.
- W3094484482 hasConcept C159620131 @default.
- W3094484482 hasConcept C202269582 @default.
- W3094484482 hasConcept C205649164 @default.
- W3094484482 hasConcept C2776401178 @default.
- W3094484482 hasConcept C2780980858 @default.
- W3094484482 hasConcept C33954974 @default.
- W3094484482 hasConcept C41008148 @default.
- W3094484482 hasConcept C41895202 @default.
- W3094484482 hasConcept C50644808 @default.
- W3094484482 hasConcept C51399673 @default.
- W3094484482 hasConcept C52622490 @default.
- W3094484482 hasConcept C54355233 @default.
- W3094484482 hasConcept C59404180 @default.
- W3094484482 hasConcept C62649853 @default.