Matches in SemOpenAlex for { <https://semopenalex.org/work/W3094518056> ?p ?o ?g. }
- W3094518056 endingPage "743" @default.
- W3094518056 startingPage "737" @default.
- W3094518056 abstract "Abstract Motivation Influenza viruses are persistently threatening public health, causing annual epidemics and sporadic pandemics. The evolution of influenza viruses remains to be the main obstacle in the effectiveness of antiviral treatments due to rapid mutations. Previous work has been investigated to reveal the determinants of virulence of the influenza A virus. To further facilitate flu surveillance, explicit detection of influenza virulence is crucial to protect public health from potential future pandemics. Results In this article, we propose a weighted ensemble convolutional neural network (CNN) for the virulence prediction of influenza A viruses named VirPreNet that uses all eight segments. Firstly, mouse lethal dose 50 is exerted to label the virulence of infections into two classes, namely avirulent and virulent. A numerical representation of amino acids named ProtVec is applied to the eight-segments in a distributed manner to encode the biological sequences. After splittings and embeddings of influenza strains, the ensemble CNN is constructed as the base model on the influenza dataset of each segment, which serves as the VirPreNet’s main part. Followed by a linear layer, the initial predictive outcomes are integrated and assigned with different weights for the final prediction. The experimental results on the collected influenza dataset indicate that VirPreNet achieves state-of-the-art performance combining ProtVec with our proposed architecture. It outperforms baseline methods on the independent testing data. Moreover, our proposed model reveals the importance of PB2 and HA segments on the virulence prediction. We believe that our model may provide new insights into the investigation of influenza virulence. Availability and implementation Codes and data to generate the VirPreNet are publicly available at https://github.com/Rayin-saber/VirPreNet. Supplementary information Supplementary data are available at Bioinformatics online." @default.
- W3094518056 created "2020-10-29" @default.
- W3094518056 creator A5010951535 @default.
- W3094518056 creator A5027208445 @default.
- W3094518056 creator A5045028640 @default.
- W3094518056 creator A5077105641 @default.
- W3094518056 creator A5084325598 @default.
- W3094518056 date "2020-10-20" @default.
- W3094518056 modified "2023-09-25" @default.
- W3094518056 title "VirPreNet: a weighted ensemble convolutional neural network for the virulence prediction of influenza A virus using all eight segments " @default.
- W3094518056 cites W1492465290 @default.
- W3094518056 cites W1501531009 @default.
- W3094518056 cites W1868415946 @default.
- W3094518056 cites W1964541540 @default.
- W3094518056 cites W1965270399 @default.
- W3094518056 cites W197019882 @default.
- W3094518056 cites W1989524330 @default.
- W3094518056 cites W1990545448 @default.
- W3094518056 cites W1991581164 @default.
- W3094518056 cites W2001847353 @default.
- W3094518056 cites W2024648909 @default.
- W3094518056 cites W2030932194 @default.
- W3094518056 cites W2033371754 @default.
- W3094518056 cites W2035247384 @default.
- W3094518056 cites W2047965649 @default.
- W3094518056 cites W2055043387 @default.
- W3094518056 cites W2058963806 @default.
- W3094518056 cites W2071644795 @default.
- W3094518056 cites W2077845498 @default.
- W3094518056 cites W2080924787 @default.
- W3094518056 cites W2093983981 @default.
- W3094518056 cites W2108598243 @default.
- W3094518056 cites W2140808084 @default.
- W3094518056 cites W2142694332 @default.
- W3094518056 cites W2152652033 @default.
- W3094518056 cites W2153037310 @default.
- W3094518056 cites W2156220563 @default.
- W3094518056 cites W2160378127 @default.
- W3094518056 cites W2226861039 @default.
- W3094518056 cites W2268788718 @default.
- W3094518056 cites W2313411748 @default.
- W3094518056 cites W2559927678 @default.
- W3094518056 cites W2620429297 @default.
- W3094518056 cites W2765832086 @default.
- W3094518056 cites W2793918183 @default.
- W3094518056 cites W2799706811 @default.
- W3094518056 cites W2963457143 @default.
- W3094518056 cites W2997095195 @default.
- W3094518056 cites W3003415212 @default.
- W3094518056 cites W3013637395 @default.
- W3094518056 cites W4231170962 @default.
- W3094518056 doi "https://doi.org/10.1093/bioinformatics/btaa901" @default.
- W3094518056 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33241321" @default.
- W3094518056 hasPublicationYear "2020" @default.
- W3094518056 type Work @default.
- W3094518056 sameAs 3094518056 @default.
- W3094518056 citedByCount "7" @default.
- W3094518056 countsByYear W30945180562020 @default.
- W3094518056 countsByYear W30945180562021 @default.
- W3094518056 countsByYear W30945180562022 @default.
- W3094518056 countsByYear W30945180562023 @default.
- W3094518056 crossrefType "journal-article" @default.
- W3094518056 hasAuthorship W3094518056A5010951535 @default.
- W3094518056 hasAuthorship W3094518056A5027208445 @default.
- W3094518056 hasAuthorship W3094518056A5045028640 @default.
- W3094518056 hasAuthorship W3094518056A5077105641 @default.
- W3094518056 hasAuthorship W3094518056A5084325598 @default.
- W3094518056 hasBestOaLocation W30945180562 @default.
- W3094518056 hasConcept C104317684 @default.
- W3094518056 hasConcept C127413603 @default.
- W3094518056 hasConcept C142724271 @default.
- W3094518056 hasConcept C154945302 @default.
- W3094518056 hasConcept C159047783 @default.
- W3094518056 hasConcept C2522874641 @default.
- W3094518056 hasConcept C2777546802 @default.
- W3094518056 hasConcept C2779134260 @default.
- W3094518056 hasConcept C3008058167 @default.
- W3094518056 hasConcept C41008148 @default.
- W3094518056 hasConcept C524204448 @default.
- W3094518056 hasConcept C54355233 @default.
- W3094518056 hasConcept C60987743 @default.
- W3094518056 hasConcept C62611344 @default.
- W3094518056 hasConcept C66746571 @default.
- W3094518056 hasConcept C66938386 @default.
- W3094518056 hasConcept C70721500 @default.
- W3094518056 hasConcept C71924100 @default.
- W3094518056 hasConcept C81363708 @default.
- W3094518056 hasConcept C86803240 @default.
- W3094518056 hasConcept C89623803 @default.
- W3094518056 hasConceptScore W3094518056C104317684 @default.
- W3094518056 hasConceptScore W3094518056C127413603 @default.
- W3094518056 hasConceptScore W3094518056C142724271 @default.
- W3094518056 hasConceptScore W3094518056C154945302 @default.
- W3094518056 hasConceptScore W3094518056C159047783 @default.
- W3094518056 hasConceptScore W3094518056C2522874641 @default.
- W3094518056 hasConceptScore W3094518056C2777546802 @default.
- W3094518056 hasConceptScore W3094518056C2779134260 @default.
- W3094518056 hasConceptScore W3094518056C3008058167 @default.