Matches in SemOpenAlex for { <https://semopenalex.org/work/W3094530002> ?p ?o ?g. }
- W3094530002 endingPage "344" @default.
- W3094530002 startingPage "344" @default.
- W3094530002 abstract "Objective The mitotic count of gastrointestinal stromal tumors (GIST) is closely associated with the risk of planting and metastasis. The purpose of this study was to develop a predictive model for the mitotic index of local primary GIST, based on deep learning algorithm. Materials and methods Abdominal contrast-enhanced CT images of 148 pathologically confirmed GIST cases were retrospectively collected for the development of a deep learning classification algorithm. The areas of GIST masses on the CT images were retrospectively labelled by an experienced radiologist. The postoperative pathological mitotic count was considered as the gold standard (high mitotic count, > 5/50 high-power fields [HPFs]; low mitotic count, ≤ 5/50 HPFs). A binary classification model was trained on the basis of the VGG16 convolutional neural network, using the CT images with the training set (n = 108), validation set (n = 20), and the test set (n = 20). The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated at both, the image level and the patient level. The receiver operating characteristic curves were generated on the basis of the model prediction results and the area under curves (AUCs) were calculated. The risk categories of the tumors were predicted according to the Armed Forces Institute of Pathology criteria. Results At the image level, the classification prediction results of the mitotic counts in the test cohort were as follows: sensitivity 85.7% (95% confidence interval [CI]: 0.834-0.877), specificity 67.5% (95% CI: 0.636-0.712), PPV 82.1% (95% CI: 0.797-0.843), NPV 73.0% (95% CI: 0.691-0.766), and AUC 0.771 (95% CI: 0.750-0.791). At the patient level, the classification prediction results in the test cohort were as follows: sensitivity 90.0% (95% CI: 0.541-0.995), specificity 70.0% (95% CI: 0.354-0.919), PPV 75.0% (95% CI: 0.428-0.933), NPV 87.5% (95% CI: 0.467-0.993), and AUC 0.800 (95% CI: 0.563-0.943). Conclusion We developed and preliminarily verified the GIST mitotic count binary prediction model, based on the VGG convolutional neural network. The model displayed a good predictive performance." @default.
- W3094530002 created "2020-10-29" @default.
- W3094530002 creator A5017504683 @default.
- W3094530002 creator A5018497169 @default.
- W3094530002 creator A5029363724 @default.
- W3094530002 creator A5041009172 @default.
- W3094530002 creator A5060391059 @default.
- W3094530002 creator A5071352401 @default.
- W3094530002 creator A5083109046 @default.
- W3094530002 date "2021-01-01" @default.
- W3094530002 modified "2023-09-27" @default.
- W3094530002 title "Development of a Malignancy Potential Binary Prediction Model Based on Deep Learning for the Mitotic Count of Local Primary Gastrointestinal Stromal Tumors" @default.
- W3094530002 cites W1933891757 @default.
- W3094530002 cites W1983787922 @default.
- W3094530002 cites W1985861335 @default.
- W3094530002 cites W1987037759 @default.
- W3094530002 cites W2042795144 @default.
- W3094530002 cites W2047841290 @default.
- W3094530002 cites W2064997765 @default.
- W3094530002 cites W2068926954 @default.
- W3094530002 cites W2079289904 @default.
- W3094530002 cites W2085399834 @default.
- W3094530002 cites W2085760486 @default.
- W3094530002 cites W2086323209 @default.
- W3094530002 cites W2092105161 @default.
- W3094530002 cites W2123232650 @default.
- W3094530002 cites W2216920222 @default.
- W3094530002 cites W2528422062 @default.
- W3094530002 cites W2559582770 @default.
- W3094530002 cites W2593374366 @default.
- W3094530002 cites W2743008510 @default.
- W3094530002 cites W2766005440 @default.
- W3094530002 cites W2783277781 @default.
- W3094530002 cites W2806717565 @default.
- W3094530002 cites W2807086064 @default.
- W3094530002 cites W2809050305 @default.
- W3094530002 cites W2885164421 @default.
- W3094530002 cites W2888770844 @default.
- W3094530002 cites W2892235321 @default.
- W3094530002 cites W2902159658 @default.
- W3094530002 cites W2903172822 @default.
- W3094530002 cites W2910380368 @default.
- W3094530002 cites W2919115771 @default.
- W3094530002 cites W2955107871 @default.
- W3094530002 cites W2964118901 @default.
- W3094530002 cites W4285097283 @default.
- W3094530002 cites W4376848385 @default.
- W3094530002 doi "https://doi.org/10.3348/kjr.2019.0851" @default.
- W3094530002 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7909867" @default.
- W3094530002 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33169545" @default.
- W3094530002 hasPublicationYear "2021" @default.
- W3094530002 type Work @default.
- W3094530002 sameAs 3094530002 @default.
- W3094530002 citedByCount "5" @default.
- W3094530002 countsByYear W30945300022022 @default.
- W3094530002 countsByYear W30945300022023 @default.
- W3094530002 crossrefType "journal-article" @default.
- W3094530002 hasAuthorship W3094530002A5017504683 @default.
- W3094530002 hasAuthorship W3094530002A5018497169 @default.
- W3094530002 hasAuthorship W3094530002A5029363724 @default.
- W3094530002 hasAuthorship W3094530002A5041009172 @default.
- W3094530002 hasAuthorship W3094530002A5060391059 @default.
- W3094530002 hasAuthorship W3094530002A5071352401 @default.
- W3094530002 hasAuthorship W3094530002A5083109046 @default.
- W3094530002 hasBestOaLocation W30945300022 @default.
- W3094530002 hasConcept C121332964 @default.
- W3094530002 hasConcept C126838900 @default.
- W3094530002 hasConcept C1276947 @default.
- W3094530002 hasConcept C142724271 @default.
- W3094530002 hasConcept C143998085 @default.
- W3094530002 hasConcept C16930146 @default.
- W3094530002 hasConcept C2777007597 @default.
- W3094530002 hasConcept C2777977315 @default.
- W3094530002 hasConcept C2779399171 @default.
- W3094530002 hasConcept C71924100 @default.
- W3094530002 hasConceptScore W3094530002C121332964 @default.
- W3094530002 hasConceptScore W3094530002C126838900 @default.
- W3094530002 hasConceptScore W3094530002C1276947 @default.
- W3094530002 hasConceptScore W3094530002C142724271 @default.
- W3094530002 hasConceptScore W3094530002C143998085 @default.
- W3094530002 hasConceptScore W3094530002C16930146 @default.
- W3094530002 hasConceptScore W3094530002C2777007597 @default.
- W3094530002 hasConceptScore W3094530002C2777977315 @default.
- W3094530002 hasConceptScore W3094530002C2779399171 @default.
- W3094530002 hasConceptScore W3094530002C71924100 @default.
- W3094530002 hasIssue "3" @default.
- W3094530002 hasLocation W30945300021 @default.
- W3094530002 hasLocation W30945300022 @default.
- W3094530002 hasOpenAccess W3094530002 @default.
- W3094530002 hasPrimaryLocation W30945300021 @default.
- W3094530002 hasRelatedWork W2084177708 @default.
- W3094530002 hasRelatedWork W2103888930 @default.
- W3094530002 hasRelatedWork W2111154735 @default.
- W3094530002 hasRelatedWork W2154297247 @default.
- W3094530002 hasRelatedWork W2362865590 @default.
- W3094530002 hasRelatedWork W2375246222 @default.
- W3094530002 hasRelatedWork W2385050303 @default.
- W3094530002 hasRelatedWork W2902148150 @default.