Matches in SemOpenAlex for { <https://semopenalex.org/work/W3094539539> ?p ?o ?g. }
- W3094539539 abstract "Panoptic Segmentation aims to provide an understanding of background (stuff) and instances of objects (things) at a pixel level. It combines the separate tasks of semantic segmentation (pixel-level classification) and instance segmentation to build a single unified scene understanding task. Typically, panoptic segmentation is derived by combining semantic and instance segmentation tasks that are learned separately or jointly (multi-task networks). In general, instance segmentation networks are built by adding a foreground mask estimation layer on top of object detectors or using instance clustering methods that assign a pixel to an instance center. In this work, we present a fully convolution neural network that learns instance segmentation from semantic segmentation and instance contours (boundaries of things). Instance contours along with semantic segmentation yield a boundary-aware semantic segmentation of things. Connected component labeling on these results produces instance segmentation. We merge semantic and instance segmentation results to output panoptic segmentation. We evaluate our proposed method on the CityScapes dataset to demonstrate qualitative and quantitative performances along with several ablation studies." @default.
- W3094539539 created "2020-10-29" @default.
- W3094539539 creator A5014764449 @default.
- W3094539539 creator A5020528946 @default.
- W3094539539 creator A5055659576 @default.
- W3094539539 creator A5074948543 @default.
- W3094539539 creator A5091875799 @default.
- W3094539539 date "2020-10-16" @default.
- W3094539539 modified "2023-10-16" @default.
- W3094539539 title "Learning Panoptic Segmentation from Instance Contours" @default.
- W3094539539 cites W1673310716 @default.
- W3094539539 cites W1745334888 @default.
- W3094539539 cites W1901129140 @default.
- W3094539539 cites W1930528368 @default.
- W3094539539 cites W1978081629 @default.
- W3094539539 cites W2008969013 @default.
- W3094539539 cites W2108598243 @default.
- W3094539539 cites W2109255472 @default.
- W3094539539 cites W2120617193 @default.
- W3094539539 cites W2124592697 @default.
- W3094539539 cites W2160642098 @default.
- W3094539539 cites W2194775991 @default.
- W3094539539 cites W2340897893 @default.
- W3094539539 cites W2412782625 @default.
- W3094539539 cites W2557889580 @default.
- W3094539539 cites W2560622558 @default.
- W3094539539 cites W2565639579 @default.
- W3094539539 cites W2613718673 @default.
- W3094539539 cites W2777795072 @default.
- W3094539539 cites W2795783309 @default.
- W3094539539 cites W2883254424 @default.
- W3094539539 cites W2891432762 @default.
- W3094539539 cites W2892220819 @default.
- W3094539539 cites W2910628332 @default.
- W3094539539 cites W2913340405 @default.
- W3094539539 cites W2943552940 @default.
- W3094539539 cites W2963037989 @default.
- W3094539539 cites W2963150697 @default.
- W3094539539 cites W2963307106 @default.
- W3094539539 cites W2963455537 @default.
- W3094539539 cites W2963677766 @default.
- W3094539539 cites W2963833733 @default.
- W3094539539 cites W2963954267 @default.
- W3094539539 cites W2964089273 @default.
- W3094539539 cites W2965182628 @default.
- W3094539539 cites W2970262836 @default.
- W3094539539 cites W2982631194 @default.
- W3094539539 cites W2990217526 @default.
- W3094539539 cites W2990874363 @default.
- W3094539539 cites W2999219213 @default.
- W3094539539 cites W3029960749 @default.
- W3094539539 cites W3034355852 @default.
- W3094539539 cites W3034826836 @default.
- W3094539539 cites W3035709993 @default.
- W3094539539 cites W3106250896 @default.
- W3094539539 cites W3135227369 @default.
- W3094539539 cites W845365781 @default.
- W3094539539 hasPublicationYear "2020" @default.
- W3094539539 type Work @default.
- W3094539539 sameAs 3094539539 @default.
- W3094539539 citedByCount "1" @default.
- W3094539539 countsByYear W30945395392021 @default.
- W3094539539 crossrefType "posted-content" @default.
- W3094539539 hasAuthorship W3094539539A5014764449 @default.
- W3094539539 hasAuthorship W3094539539A5020528946 @default.
- W3094539539 hasAuthorship W3094539539A5055659576 @default.
- W3094539539 hasAuthorship W3094539539A5074948543 @default.
- W3094539539 hasAuthorship W3094539539A5091875799 @default.
- W3094539539 hasConcept C124504099 @default.
- W3094539539 hasConcept C153180895 @default.
- W3094539539 hasConcept C154945302 @default.
- W3094539539 hasConcept C160633673 @default.
- W3094539539 hasConcept C25694479 @default.
- W3094539539 hasConcept C31972630 @default.
- W3094539539 hasConcept C41008148 @default.
- W3094539539 hasConcept C65885262 @default.
- W3094539539 hasConcept C89600930 @default.
- W3094539539 hasConceptScore W3094539539C124504099 @default.
- W3094539539 hasConceptScore W3094539539C153180895 @default.
- W3094539539 hasConceptScore W3094539539C154945302 @default.
- W3094539539 hasConceptScore W3094539539C160633673 @default.
- W3094539539 hasConceptScore W3094539539C25694479 @default.
- W3094539539 hasConceptScore W3094539539C31972630 @default.
- W3094539539 hasConceptScore W3094539539C41008148 @default.
- W3094539539 hasConceptScore W3094539539C65885262 @default.
- W3094539539 hasConceptScore W3094539539C89600930 @default.
- W3094539539 hasLocation W30945395391 @default.
- W3094539539 hasOpenAccess W3094539539 @default.
- W3094539539 hasPrimaryLocation W30945395391 @default.
- W3094539539 hasRelatedWork W1973071925 @default.
- W3094539539 hasRelatedWork W2146042450 @default.
- W3094539539 hasRelatedWork W2582761847 @default.
- W3094539539 hasRelatedWork W2608362693 @default.
- W3094539539 hasRelatedWork W2608858501 @default.
- W3094539539 hasRelatedWork W2736685366 @default.
- W3094539539 hasRelatedWork W2906500221 @default.
- W3094539539 hasRelatedWork W2910399215 @default.
- W3094539539 hasRelatedWork W2928059219 @default.
- W3094539539 hasRelatedWork W2952515999 @default.
- W3094539539 hasRelatedWork W2963935758 @default.