Matches in SemOpenAlex for { <https://semopenalex.org/work/W3094555480> ?p ?o ?g. }
- W3094555480 abstract "Abstract Background Thirty to forty percent of patients with Diffuse Large B-cell Lymphoma (DLBCL) have an adverse clinical evolution. The increased understanding of DLBCL biology has shed light on the clinical evolution of this pathology, leading to the discovery of prognostic factors based on gene expression data, genomic rearrangements and mutational subgroups. Nevertheless, additional efforts are needed in order to enable survival predictions at the patient level. In this study we investigated new machine learning-based models of survival using transcriptomic and clinical data. Methods Gene expression profiling (GEP) of in 2 different publicly available retrospective DLBCL cohorts were analyzed. Cox regression and unsupervised clustering were performed in order to identify probes associated with overall survival on the largest cohort. Random forests were created to model survival using combinations of GEP data, COO classification and clinical information. Cross-validation was used to compare model results in the training set, and Harrel’s concordance index (c-index) was used to assess model’s predictability. Results were validated in an independent test set. Results Two hundred thirty-three and sixty-four patients were included in the training and test set, respectively. Initially we derived and validated a 4-gene expression clusterization that was independently associated with lower survival in 20% of patients. This pattern included the following genes: TNFRSF9 , BIRC3 , BCL2L1 and G3BP2 . Thereafter, we applied machine-learning models to predict survival. A set of 102 genes was highly predictive of disease outcome, outperforming available clinical information and COO classification. The final best model integrated clinical information, COO classification, 4-gene-based clusterization and the expression levels of 50 individual genes (training set c-index, 0.8404, test set c-index, 0.7942). Conclusion Our results indicate that DLBCL survival models based on the application of machine learning algorithms to gene expression and clinical data can largely outperform other important prognostic variables such as disease stage and COO. Head-to-head comparisons with other risk stratification models are needed to compare its usefulness." @default.
- W3094555480 created "2020-10-29" @default.
- W3094555480 creator A5008315851 @default.
- W3094555480 creator A5010347517 @default.
- W3094555480 creator A5011554332 @default.
- W3094555480 creator A5017691336 @default.
- W3094555480 creator A5019585960 @default.
- W3094555480 creator A5032350240 @default.
- W3094555480 creator A5035040830 @default.
- W3094555480 creator A5041586317 @default.
- W3094555480 creator A5059991567 @default.
- W3094555480 creator A5061814384 @default.
- W3094555480 creator A5073352734 @default.
- W3094555480 creator A5077559831 @default.
- W3094555480 creator A5089770876 @default.
- W3094555480 creator A5091068525 @default.
- W3094555480 date "2020-10-21" @default.
- W3094555480 modified "2023-10-04" @default.
- W3094555480 title "Improved personalized survival prediction of patients with diffuse large B-cell Lymphoma using gene expression profiling" @default.
- W3094555480 cites W1547132634 @default.
- W3094555480 cites W1828220022 @default.
- W3094555480 cites W1847384517 @default.
- W3094555480 cites W2007050465 @default.
- W3094555480 cites W2020541351 @default.
- W3094555480 cites W2024040061 @default.
- W3094555480 cites W2037796411 @default.
- W3094555480 cites W2057862856 @default.
- W3094555480 cites W2068343048 @default.
- W3094555480 cites W2084139018 @default.
- W3094555480 cites W2145304413 @default.
- W3094555480 cites W2147246240 @default.
- W3094555480 cites W2174666838 @default.
- W3094555480 cites W2310716991 @default.
- W3094555480 cites W2518731208 @default.
- W3094555480 cites W2519132385 @default.
- W3094555480 cites W2762450632 @default.
- W3094555480 cites W2781081926 @default.
- W3094555480 cites W2788380546 @default.
- W3094555480 cites W2797584152 @default.
- W3094555480 cites W2811018964 @default.
- W3094555480 cites W2883371432 @default.
- W3094555480 cites W2897161797 @default.
- W3094555480 cites W2897301108 @default.
- W3094555480 cites W2902375153 @default.
- W3094555480 cites W2903278833 @default.
- W3094555480 cites W2914405142 @default.
- W3094555480 cites W2934399013 @default.
- W3094555480 cites W2943162041 @default.
- W3094555480 cites W2968147120 @default.
- W3094555480 cites W3099478002 @default.
- W3094555480 doi "https://doi.org/10.1186/s12885-020-07492-y" @default.
- W3094555480 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7579992" @default.
- W3094555480 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33087075" @default.
- W3094555480 hasPublicationYear "2020" @default.
- W3094555480 type Work @default.
- W3094555480 sameAs 3094555480 @default.
- W3094555480 citedByCount "7" @default.
- W3094555480 countsByYear W30945554802020 @default.
- W3094555480 countsByYear W30945554802022 @default.
- W3094555480 countsByYear W30945554802023 @default.
- W3094555480 crossrefType "journal-article" @default.
- W3094555480 hasAuthorship W3094555480A5008315851 @default.
- W3094555480 hasAuthorship W3094555480A5010347517 @default.
- W3094555480 hasAuthorship W3094555480A5011554332 @default.
- W3094555480 hasAuthorship W3094555480A5017691336 @default.
- W3094555480 hasAuthorship W3094555480A5019585960 @default.
- W3094555480 hasAuthorship W3094555480A5032350240 @default.
- W3094555480 hasAuthorship W3094555480A5035040830 @default.
- W3094555480 hasAuthorship W3094555480A5041586317 @default.
- W3094555480 hasAuthorship W3094555480A5059991567 @default.
- W3094555480 hasAuthorship W3094555480A5061814384 @default.
- W3094555480 hasAuthorship W3094555480A5073352734 @default.
- W3094555480 hasAuthorship W3094555480A5077559831 @default.
- W3094555480 hasAuthorship W3094555480A5089770876 @default.
- W3094555480 hasAuthorship W3094555480A5091068525 @default.
- W3094555480 hasBestOaLocation W30945554801 @default.
- W3094555480 hasConcept C104317684 @default.
- W3094555480 hasConcept C10515644 @default.
- W3094555480 hasConcept C119857082 @default.
- W3094555480 hasConcept C126322002 @default.
- W3094555480 hasConcept C143998085 @default.
- W3094555480 hasConcept C150194340 @default.
- W3094555480 hasConcept C154945302 @default.
- W3094555480 hasConcept C160798450 @default.
- W3094555480 hasConcept C169258074 @default.
- W3094555480 hasConcept C18431079 @default.
- W3094555480 hasConcept C2778476033 @default.
- W3094555480 hasConcept C2778559949 @default.
- W3094555480 hasConcept C2779338263 @default.
- W3094555480 hasConcept C41008148 @default.
- W3094555480 hasConcept C50382708 @default.
- W3094555480 hasConcept C54355233 @default.
- W3094555480 hasConcept C60644358 @default.
- W3094555480 hasConcept C70721500 @default.
- W3094555480 hasConcept C71924100 @default.
- W3094555480 hasConcept C86803240 @default.
- W3094555480 hasConceptScore W3094555480C104317684 @default.
- W3094555480 hasConceptScore W3094555480C10515644 @default.
- W3094555480 hasConceptScore W3094555480C119857082 @default.
- W3094555480 hasConceptScore W3094555480C126322002 @default.