Matches in SemOpenAlex for { <https://semopenalex.org/work/W3094568252> ?p ?o ?g. }
- W3094568252 endingPage "113505" @default.
- W3094568252 startingPage "113505" @default.
- W3094568252 abstract "In Parts I (Bonet et al., 2015) and II (Gil et al., 2016) of this series, a novel computational framework was presented for the numerical analysis of large strain fast solid dynamics in compressible and nearly/truly incompressible isothermal hyperelasticity. The methodology exploited the use of a system of first order Total Lagrangian conservation laws formulated in terms of the linear momentum and a triplet of deformation measures comprised of the deformation gradient tensor, its co-factor and its Jacobian. Moreover, the consideration of polyconvex constitutive laws was exploited in order to guarantee the hyperbolicity of the system and show the existence of a convex entropy function (sum of kinetic and strain energy per unit undeformed volume) necessary for symmetrisation. In this new paper, the framework is extended to the more general case of thermo-elasticity by incorporating the first law of thermodynamics as an additional conservation law, written in terms of either the entropy (suitable for smooth solutions) or the total energy density (suitable for discontinuous solutions) of the system. The paper is further enhanced with the following key novelties. First, sufficient conditions are put forward in terms of the internal energy density and the entropy measured at reference temperature in order to ensure ab-initio the polyconvexity of the internal energy density in terms of the extended set comprised of the triplet of deformation measures and the entropy. Second, the study of the eigenvalue structure of the system is performed as proof of hyperbolicity and with the purpose of obtaining correct time step bounds for explicit time integrators. Application to two well-established thermo-elastic models is presented: Mie–Grüneisen and modified entropic elasticity. Third, the use of polyconvex internal energy constitutive laws enables the definition of a generalised convex entropy function, namely the ballistic energy, and associated entropy fluxes, allowing the symmetrisation of the system of conservation laws in terms of entropy-conjugate fields. Fourth, and in line with the previous papers of the series, an explicit stabilised Petrov–Galerkin framework is presented for the numerical solution of the thermo-elastic system of conservation laws when considering the entropy as an unknown of the system. Finally, a series of numerical examples is presented in order to assess the applicability and robustness of the proposed formulation." @default.
- W3094568252 created "2020-10-29" @default.
- W3094568252 creator A5010862632 @default.
- W3094568252 creator A5028626068 @default.
- W3094568252 creator A5033668556 @default.
- W3094568252 creator A5046985434 @default.
- W3094568252 date "2021-01-01" @default.
- W3094568252 modified "2023-10-17" @default.
- W3094568252 title "A first order hyperbolic framework for large strain computational solid dynamics. Part III: Thermo-elasticity" @default.
- W3094568252 cites W1019867296 @default.
- W3094568252 cites W1563935867 @default.
- W3094568252 cites W1938543924 @default.
- W3094568252 cites W1951769372 @default.
- W3094568252 cites W1968809248 @default.
- W3094568252 cites W1978620595 @default.
- W3094568252 cites W1985585202 @default.
- W3094568252 cites W1986608219 @default.
- W3094568252 cites W1991725548 @default.
- W3094568252 cites W2007515850 @default.
- W3094568252 cites W2026585040 @default.
- W3094568252 cites W2026856922 @default.
- W3094568252 cites W2027596044 @default.
- W3094568252 cites W2028736583 @default.
- W3094568252 cites W2032893239 @default.
- W3094568252 cites W2033696947 @default.
- W3094568252 cites W2042299302 @default.
- W3094568252 cites W2042321858 @default.
- W3094568252 cites W2047505599 @default.
- W3094568252 cites W2049508106 @default.
- W3094568252 cites W2055322302 @default.
- W3094568252 cites W2055874224 @default.
- W3094568252 cites W2060951497 @default.
- W3094568252 cites W2060973572 @default.
- W3094568252 cites W2065079596 @default.
- W3094568252 cites W2065967312 @default.
- W3094568252 cites W2066090268 @default.
- W3094568252 cites W2068604923 @default.
- W3094568252 cites W2069554949 @default.
- W3094568252 cites W2070033465 @default.
- W3094568252 cites W2070731504 @default.
- W3094568252 cites W2070927576 @default.
- W3094568252 cites W2073897969 @default.
- W3094568252 cites W2074206687 @default.
- W3094568252 cites W2082043116 @default.
- W3094568252 cites W2082200527 @default.
- W3094568252 cites W2088703872 @default.
- W3094568252 cites W2089244143 @default.
- W3094568252 cites W2090128972 @default.
- W3094568252 cites W2094762597 @default.
- W3094568252 cites W2109120129 @default.
- W3094568252 cites W2109647559 @default.
- W3094568252 cites W2113539312 @default.
- W3094568252 cites W2117591526 @default.
- W3094568252 cites W2127145967 @default.
- W3094568252 cites W2131316827 @default.
- W3094568252 cites W2145781189 @default.
- W3094568252 cites W2152512756 @default.
- W3094568252 cites W2153517540 @default.
- W3094568252 cites W2156661592 @default.
- W3094568252 cites W2165236863 @default.
- W3094568252 cites W2167082421 @default.
- W3094568252 cites W2210513266 @default.
- W3094568252 cites W2236510122 @default.
- W3094568252 cites W2265706702 @default.
- W3094568252 cites W2373659874 @default.
- W3094568252 cites W2500405709 @default.
- W3094568252 cites W2515034908 @default.
- W3094568252 cites W2529562976 @default.
- W3094568252 cites W2587411363 @default.
- W3094568252 cites W2737558995 @default.
- W3094568252 cites W2789334220 @default.
- W3094568252 cites W2801613888 @default.
- W3094568252 cites W2802103082 @default.
- W3094568252 cites W2810397991 @default.
- W3094568252 cites W2892076951 @default.
- W3094568252 cites W2911362162 @default.
- W3094568252 cites W2942596177 @default.
- W3094568252 cites W2962979053 @default.
- W3094568252 cites W3033776764 @default.
- W3094568252 cites W3080723568 @default.
- W3094568252 cites W4231817347 @default.
- W3094568252 doi "https://doi.org/10.1016/j.cma.2020.113505" @default.
- W3094568252 hasPublicationYear "2021" @default.
- W3094568252 type Work @default.
- W3094568252 sameAs 3094568252 @default.
- W3094568252 citedByCount "13" @default.
- W3094568252 countsByYear W30945682522021 @default.
- W3094568252 countsByYear W30945682522022 @default.
- W3094568252 countsByYear W30945682522023 @default.
- W3094568252 crossrefType "journal-article" @default.
- W3094568252 hasAuthorship W3094568252A5010862632 @default.
- W3094568252 hasAuthorship W3094568252A5028626068 @default.
- W3094568252 hasAuthorship W3094568252A5033668556 @default.
- W3094568252 hasAuthorship W3094568252A5046985434 @default.
- W3094568252 hasBestOaLocation W30945682522 @default.
- W3094568252 hasConcept C106301342 @default.
- W3094568252 hasConcept C119820323 @default.
- W3094568252 hasConcept C121332964 @default.