Matches in SemOpenAlex for { <https://semopenalex.org/work/W3094582681> ?p ?o ?g. }
- W3094582681 endingPage "5605" @default.
- W3094582681 startingPage "5591" @default.
- W3094582681 abstract "Metal-insulator transition (MIT) compounds are materials that may exhibit insulating or metallic behavior, depending on the physical conditions, and are of immense fundamental interest owing to their potential applications in emerging microelectronics. There is a dearth of thermally-driven MIT materials, however, which makes delineating these compounds from those that are exclusively insulating or metallic challenging. Here we report a material database comprising temperature-controlled MITs (and metals and insulators with similar chemical composition and stoichiometries to the MIT compounds) from high quality experimental literature, built through a combination of materials-domain knowledge and natural language processing. We featurize the dataset using compositional, structural, and energetic descriptors, including two MIT relevant energy scales, an estimated Hubbard interaction and the charge transfer energy, as well as the structure-bond-stress metric referred to as the global-instability index (GII). We then perform supervised classification, constructing three electronic-state classifiers: metal vs non-metal (M), insulator vs non-insulator (I), and MIT vs non-MIT (T). We identify two important descriptors that separate metals, insulators, and MIT materials in a 2D feature space: the average deviation of the covalent radius and the range of the Mendeleev number. We further elaborate on other important features (GII and Ewald energy), and examine how they affect classification of binary vanadium and titanium oxides. We discuss the relationship of these atomic features to the physical interactions underlying MITs in the rare-earth nickelate family. Last, we implement an online version of the classifiers, enabling quick probabilistic class predictions by uploading a crystallographic structure file." @default.
- W3094582681 created "2020-10-29" @default.
- W3094582681 creator A5007838414 @default.
- W3094582681 creator A5010382380 @default.
- W3094582681 creator A5034448669 @default.
- W3094582681 creator A5038125584 @default.
- W3094582681 creator A5038824026 @default.
- W3094582681 creator A5038994919 @default.
- W3094582681 creator A5050269446 @default.
- W3094582681 creator A5052457430 @default.
- W3094582681 creator A5073567771 @default.
- W3094582681 date "2021-07-06" @default.
- W3094582681 modified "2023-10-11" @default.
- W3094582681 title "Database, Features, and Machine Learning Model to Identify Thermally Driven Metal–Insulator Transition Compounds" @default.
- W3094582681 cites W1199176172 @default.
- W3094582681 cites W1804834304 @default.
- W3094582681 cites W1972025723 @default.
- W3094582681 cites W1972871080 @default.
- W3094582681 cites W1976492731 @default.
- W3094582681 cites W1977961411 @default.
- W3094582681 cites W1986259650 @default.
- W3094582681 cites W1992985800 @default.
- W3094582681 cites W2023972500 @default.
- W3094582681 cites W2055165130 @default.
- W3094582681 cites W2065174996 @default.
- W3094582681 cites W2073665258 @default.
- W3094582681 cites W2087499553 @default.
- W3094582681 cites W2089586521 @default.
- W3094582681 cites W2101050475 @default.
- W3094582681 cites W2117363206 @default.
- W3094582681 cites W2138060751 @default.
- W3094582681 cites W2281127889 @default.
- W3094582681 cites W2464725281 @default.
- W3094582681 cites W2472803348 @default.
- W3094582681 cites W2509765181 @default.
- W3094582681 cites W2528750465 @default.
- W3094582681 cites W2586468315 @default.
- W3094582681 cites W2749580185 @default.
- W3094582681 cites W2757219410 @default.
- W3094582681 cites W2785060548 @default.
- W3094582681 cites W2785095724 @default.
- W3094582681 cites W2790441086 @default.
- W3094582681 cites W2804431384 @default.
- W3094582681 cites W2806077230 @default.
- W3094582681 cites W2806607279 @default.
- W3094582681 cites W2808506394 @default.
- W3094582681 cites W2883067073 @default.
- W3094582681 cites W2885933934 @default.
- W3094582681 cites W2886900553 @default.
- W3094582681 cites W2891521987 @default.
- W3094582681 cites W2903216474 @default.
- W3094582681 cites W2914402533 @default.
- W3094582681 cites W2914580682 @default.
- W3094582681 cites W2936166854 @default.
- W3094582681 cites W2952122527 @default.
- W3094582681 cites W2953542615 @default.
- W3094582681 cites W2953641512 @default.
- W3094582681 cites W2972493528 @default.
- W3094582681 cites W2974741196 @default.
- W3094582681 cites W2991863966 @default.
- W3094582681 cites W3006600562 @default.
- W3094582681 cites W3013456623 @default.
- W3094582681 cites W3016071315 @default.
- W3094582681 cites W3016474637 @default.
- W3094582681 cites W3018705617 @default.
- W3094582681 cites W3030317537 @default.
- W3094582681 cites W3035517615 @default.
- W3094582681 cites W3047699737 @default.
- W3094582681 cites W3049269284 @default.
- W3094582681 cites W3089860658 @default.
- W3094582681 cites W3098076414 @default.
- W3094582681 cites W3098172045 @default.
- W3094582681 cites W3102476541 @default.
- W3094582681 cites W3102575099 @default.
- W3094582681 cites W3154143143 @default.
- W3094582681 cites W4246000878 @default.
- W3094582681 doi "https://doi.org/10.1021/acs.chemmater.1c00905" @default.
- W3094582681 hasPublicationYear "2021" @default.
- W3094582681 type Work @default.
- W3094582681 sameAs 3094582681 @default.
- W3094582681 citedByCount "17" @default.
- W3094582681 countsByYear W30945826812021 @default.
- W3094582681 countsByYear W30945826812022 @default.
- W3094582681 countsByYear W30945826812023 @default.
- W3094582681 crossrefType "journal-article" @default.
- W3094582681 hasAuthorship W3094582681A5007838414 @default.
- W3094582681 hasAuthorship W3094582681A5010382380 @default.
- W3094582681 hasAuthorship W3094582681A5034448669 @default.
- W3094582681 hasAuthorship W3094582681A5038125584 @default.
- W3094582681 hasAuthorship W3094582681A5038824026 @default.
- W3094582681 hasAuthorship W3094582681A5038994919 @default.
- W3094582681 hasAuthorship W3094582681A5050269446 @default.
- W3094582681 hasAuthorship W3094582681A5052457430 @default.
- W3094582681 hasAuthorship W3094582681A5073567771 @default.
- W3094582681 hasBestOaLocation W30945826812 @default.
- W3094582681 hasConcept C121332964 @default.
- W3094582681 hasConcept C159467904 @default.
- W3094582681 hasConcept C185592680 @default.