Matches in SemOpenAlex for { <https://semopenalex.org/work/W3094584458> ?p ?o ?g. }
- W3094584458 endingPage "185949" @default.
- W3094584458 startingPage "185938" @default.
- W3094584458 abstract "Mobile edge computing (MEC) becomes popular as it offers cloud services and functionalities to the edge devices, to enhance the quality of service (QoS) of end-users by offloading their computationally intensive tasks. At the same time, the rise in the number of internet of things (IoT) objectives poses considerable cybersecurity issues owing to the latest rise in the existence of attacks. Presently, the development of deep learning and hardware technologies offers a way to detect the present traffic condition, data offloading, and cyber-attacks in edge networks. The utilization of DL models finds helpful in several domains in which the MEC provides the decisive beneficiary of the approach for traffic prediction and attack detection since a large quantity of data generated by IoT devices enables deep models to learn better than shallow approaches. In this view, this paper presents a new DL based traffic prediction with a data offloading mechanism with cyber-attack detection (DLTPDO-CD) technique. The proposed model involves three major processes traffic prediction, data offloading, and attack detection. Initially, bidirectional long short term memory (BiLSTM) based traffic prediction to enable the proficient data offloading process. Then, the adaptive sampling cross entropy (ASCE) technique is executed to maximize the network throughput by making decisions related to offloading users to the WiFi system. Finally, a deep belief network (DBN) optimized by a barnacles mating optimizer (BMO) algorithm called BMO-DBN is applied as a detection tool for cyberattacks in MEC. Extensive simulation is carried out to ensure the proficient performance of the DLTPDO-CD model. The experimental outcome stated the superiority of the presented model over the compared methods under different dimensions." @default.
- W3094584458 created "2020-10-29" @default.
- W3094584458 creator A5003705422 @default.
- W3094584458 creator A5034853815 @default.
- W3094584458 creator A5039361880 @default.
- W3094584458 creator A5049107876 @default.
- W3094584458 creator A5066044089 @default.
- W3094584458 creator A5083958705 @default.
- W3094584458 creator A5090218287 @default.
- W3094584458 date "2020-01-01" @default.
- W3094584458 modified "2023-10-01" @default.
- W3094584458 title "Deep Learning Enabled Data Offloading With Cyber Attack Detection Model in Mobile Edge Computing Systems" @default.
- W3094584458 cites W2072536931 @default.
- W3094584458 cites W2134289576 @default.
- W3094584458 cites W2543892322 @default.
- W3094584458 cites W2596709271 @default.
- W3094584458 cites W2769445799 @default.
- W3094584458 cites W2769447265 @default.
- W3094584458 cites W2777180355 @default.
- W3094584458 cites W2783325466 @default.
- W3094584458 cites W2784146026 @default.
- W3094584458 cites W2792195127 @default.
- W3094584458 cites W2792845577 @default.
- W3094584458 cites W2793326701 @default.
- W3094584458 cites W2793578783 @default.
- W3094584458 cites W2794385060 @default.
- W3094584458 cites W2799141814 @default.
- W3094584458 cites W2892174470 @default.
- W3094584458 cites W2894759413 @default.
- W3094584458 cites W2984191725 @default.
- W3094584458 cites W2994080478 @default.
- W3094584458 cites W3007075806 @default.
- W3094584458 cites W3015801892 @default.
- W3094584458 cites W3106445841 @default.
- W3094584458 doi "https://doi.org/10.1109/access.2020.3030726" @default.
- W3094584458 hasPublicationYear "2020" @default.
- W3094584458 type Work @default.
- W3094584458 sameAs 3094584458 @default.
- W3094584458 citedByCount "20" @default.
- W3094584458 countsByYear W30945844582021 @default.
- W3094584458 countsByYear W30945844582022 @default.
- W3094584458 countsByYear W30945844582023 @default.
- W3094584458 crossrefType "journal-article" @default.
- W3094584458 hasAuthorship W3094584458A5003705422 @default.
- W3094584458 hasAuthorship W3094584458A5034853815 @default.
- W3094584458 hasAuthorship W3094584458A5039361880 @default.
- W3094584458 hasAuthorship W3094584458A5049107876 @default.
- W3094584458 hasAuthorship W3094584458A5066044089 @default.
- W3094584458 hasAuthorship W3094584458A5083958705 @default.
- W3094584458 hasAuthorship W3094584458A5090218287 @default.
- W3094584458 hasBestOaLocation W30945844581 @default.
- W3094584458 hasConcept C108583219 @default.
- W3094584458 hasConcept C111919701 @default.
- W3094584458 hasConcept C120314980 @default.
- W3094584458 hasConcept C138236772 @default.
- W3094584458 hasConcept C154945302 @default.
- W3094584458 hasConcept C157764524 @default.
- W3094584458 hasConcept C162307627 @default.
- W3094584458 hasConcept C186967261 @default.
- W3094584458 hasConcept C2776061582 @default.
- W3094584458 hasConcept C2778456923 @default.
- W3094584458 hasConcept C31258907 @default.
- W3094584458 hasConcept C41008148 @default.
- W3094584458 hasConcept C5119721 @default.
- W3094584458 hasConcept C555944384 @default.
- W3094584458 hasConcept C76155785 @default.
- W3094584458 hasConcept C79403827 @default.
- W3094584458 hasConcept C79974875 @default.
- W3094584458 hasConceptScore W3094584458C108583219 @default.
- W3094584458 hasConceptScore W3094584458C111919701 @default.
- W3094584458 hasConceptScore W3094584458C120314980 @default.
- W3094584458 hasConceptScore W3094584458C138236772 @default.
- W3094584458 hasConceptScore W3094584458C154945302 @default.
- W3094584458 hasConceptScore W3094584458C157764524 @default.
- W3094584458 hasConceptScore W3094584458C162307627 @default.
- W3094584458 hasConceptScore W3094584458C186967261 @default.
- W3094584458 hasConceptScore W3094584458C2776061582 @default.
- W3094584458 hasConceptScore W3094584458C2778456923 @default.
- W3094584458 hasConceptScore W3094584458C31258907 @default.
- W3094584458 hasConceptScore W3094584458C41008148 @default.
- W3094584458 hasConceptScore W3094584458C5119721 @default.
- W3094584458 hasConceptScore W3094584458C555944384 @default.
- W3094584458 hasConceptScore W3094584458C76155785 @default.
- W3094584458 hasConceptScore W3094584458C79403827 @default.
- W3094584458 hasConceptScore W3094584458C79974875 @default.
- W3094584458 hasLocation W30945844581 @default.
- W3094584458 hasLocation W30945844582 @default.
- W3094584458 hasOpenAccess W3094584458 @default.
- W3094584458 hasPrimaryLocation W30945844581 @default.
- W3094584458 hasRelatedWork W2904860384 @default.
- W3094584458 hasRelatedWork W2917288403 @default.
- W3094584458 hasRelatedWork W2942586735 @default.
- W3094584458 hasRelatedWork W3046070740 @default.
- W3094584458 hasRelatedWork W3211931762 @default.
- W3094584458 hasRelatedWork W4224133481 @default.
- W3094584458 hasRelatedWork W4225757241 @default.
- W3094584458 hasRelatedWork W4287703675 @default.
- W3094584458 hasRelatedWork W4307482744 @default.