Matches in SemOpenAlex for { <https://semopenalex.org/work/W3094611920> ?p ?o ?g. }
- W3094611920 abstract "In this work, we study a tensor-structured random sketching matrix to project a large-scale convex optimization problem to a much lower-dimensional counterpart, which leads to huge memory and computation savings. We show that while maintaining the prediction error between a random estimator and the true solution with high probability, the dimension of the projected problem obtains optimal dependence in terms of the geometry of the constraint set. Moreover, the tensor structure and sparsity pattern of the structured random matrix yields extra computational advantage. Our analysis is based on probability chaining theory, which allows us to obtain an almost sharp estimate for the sketching dimension of convex optimization problems. Consequences of our main result are demonstrated in a few concrete examples, including unconstrained linear regressions and sparse recovery problems." @default.
- W3094611920 created "2020-10-29" @default.
- W3094611920 creator A5008888582 @default.
- W3094611920 creator A5084188467 @default.
- W3094611920 date "2020-10-19" @default.
- W3094611920 modified "2023-09-25" @default.
- W3094611920 title "Nearly sharp structured sketching for constrained optimization" @default.
- W3094611920 cites W1493892051 @default.
- W3094611920 cites W1500518989 @default.
- W3094611920 cites W19898668 @default.
- W3094611920 cites W2013912476 @default.
- W3094611920 cites W2024165284 @default.
- W3094611920 cites W2053982386 @default.
- W3094611920 cites W2101043704 @default.
- W3094611920 cites W2105724942 @default.
- W3094611920 cites W2109449402 @default.
- W3094611920 cites W2113385666 @default.
- W3094611920 cites W2130681737 @default.
- W3094611920 cites W2151683004 @default.
- W3094611920 cites W2201600774 @default.
- W3094611920 cites W2546165714 @default.
- W3094611920 cites W2607928667 @default.
- W3094611920 cites W2810526380 @default.
- W3094611920 cites W2962845550 @default.
- W3094611920 cites W2963002486 @default.
- W3094611920 cites W2963389071 @default.
- W3094611920 cites W2963433607 @default.
- W3094611920 cites W2963459305 @default.
- W3094611920 cites W2963480332 @default.
- W3094611920 cites W2964229241 @default.
- W3094611920 cites W2991374172 @default.
- W3094611920 cites W3102581530 @default.
- W3094611920 cites W3102869303 @default.
- W3094611920 cites W3139361274 @default.
- W3094611920 cites W3159300313 @default.
- W3094611920 hasPublicationYear "2020" @default.
- W3094611920 type Work @default.
- W3094611920 sameAs 3094611920 @default.
- W3094611920 citedByCount "1" @default.
- W3094611920 countsByYear W30946119202021 @default.
- W3094611920 crossrefType "posted-content" @default.
- W3094611920 hasAuthorship W3094611920A5008888582 @default.
- W3094611920 hasAuthorship W3094611920A5084188467 @default.
- W3094611920 hasConcept C105795698 @default.
- W3094611920 hasConcept C106487976 @default.
- W3094611920 hasConcept C112680207 @default.
- W3094611920 hasConcept C11413529 @default.
- W3094611920 hasConcept C114614502 @default.
- W3094611920 hasConcept C126255220 @default.
- W3094611920 hasConcept C137836250 @default.
- W3094611920 hasConcept C155281189 @default.
- W3094611920 hasConcept C15744967 @default.
- W3094611920 hasConcept C157972887 @default.
- W3094611920 hasConcept C159985019 @default.
- W3094611920 hasConcept C177264268 @default.
- W3094611920 hasConcept C185429906 @default.
- W3094611920 hasConcept C192562407 @default.
- W3094611920 hasConcept C199360897 @default.
- W3094611920 hasConcept C2524010 @default.
- W3094611920 hasConcept C2776036281 @default.
- W3094611920 hasConcept C28826006 @default.
- W3094611920 hasConcept C33676613 @default.
- W3094611920 hasConcept C33923547 @default.
- W3094611920 hasConcept C41008148 @default.
- W3094611920 hasConcept C45374587 @default.
- W3094611920 hasConcept C49020025 @default.
- W3094611920 hasConcept C542102704 @default.
- W3094611920 hasConceptScore W3094611920C105795698 @default.
- W3094611920 hasConceptScore W3094611920C106487976 @default.
- W3094611920 hasConceptScore W3094611920C112680207 @default.
- W3094611920 hasConceptScore W3094611920C11413529 @default.
- W3094611920 hasConceptScore W3094611920C114614502 @default.
- W3094611920 hasConceptScore W3094611920C126255220 @default.
- W3094611920 hasConceptScore W3094611920C137836250 @default.
- W3094611920 hasConceptScore W3094611920C155281189 @default.
- W3094611920 hasConceptScore W3094611920C15744967 @default.
- W3094611920 hasConceptScore W3094611920C157972887 @default.
- W3094611920 hasConceptScore W3094611920C159985019 @default.
- W3094611920 hasConceptScore W3094611920C177264268 @default.
- W3094611920 hasConceptScore W3094611920C185429906 @default.
- W3094611920 hasConceptScore W3094611920C192562407 @default.
- W3094611920 hasConceptScore W3094611920C199360897 @default.
- W3094611920 hasConceptScore W3094611920C2524010 @default.
- W3094611920 hasConceptScore W3094611920C2776036281 @default.
- W3094611920 hasConceptScore W3094611920C28826006 @default.
- W3094611920 hasConceptScore W3094611920C33676613 @default.
- W3094611920 hasConceptScore W3094611920C33923547 @default.
- W3094611920 hasConceptScore W3094611920C41008148 @default.
- W3094611920 hasConceptScore W3094611920C45374587 @default.
- W3094611920 hasConceptScore W3094611920C49020025 @default.
- W3094611920 hasConceptScore W3094611920C542102704 @default.
- W3094611920 hasLocation W30946119201 @default.
- W3094611920 hasOpenAccess W3094611920 @default.
- W3094611920 hasPrimaryLocation W30946119201 @default.
- W3094611920 hasRelatedWork W1629785033 @default.
- W3094611920 hasRelatedWork W1892331524 @default.
- W3094611920 hasRelatedWork W1994719275 @default.
- W3094611920 hasRelatedWork W2111200589 @default.
- W3094611920 hasRelatedWork W2116680824 @default.
- W3094611920 hasRelatedWork W2156781223 @default.