Matches in SemOpenAlex for { <https://semopenalex.org/work/W3094639489> ?p ?o ?g. }
- W3094639489 endingPage "7461" @default.
- W3094639489 startingPage "7453" @default.
- W3094639489 abstract "Machine learning methods have enabled the low-cost evaluation of molecular properties such as energy at an unprecedented scale. While many of such applications have focused on molecular input based on geometry, few studies consider representations based on the underlying electronic structure. Directing the attention to the electronic structure offers a unique challenge that allows for a more detailed representation of the underlying physics and how they affect molecular properties. The target of this work is to efficiently encode a lower-cost correlated wave function derived from MP2 to predict a higher-cost coupled-cluster singles-and-doubles (CCSD) wave function based on correlation-pair energies and the contributing electron promotions (excitations) and integrals. The new molecular representation explores the short-range behavior of electron correlation and utilizes distinct models that differentiate between two-electron promotions from the same molecular orbital or from two different orbitals. We present a re-engineered set of input features that provide an intuitive description of the orbital properties involved in electron correlation. The overall models are found to be highly transferable and size extensive, necessitating very few training instances to approach the chemical accuracy of a broad spectrum of organic molecules. The efficiency and transferability of the novel representation are demonstrated on a series of linear hydrocarbons, the potential energy surface of the water dimer, and on the GDB-9 database. For the GDB-9 database, we found that data from only 140 randomly selected molecules are adequate to achieve chemical accuracy for more than 133 000 organic molecules." @default.
- W3094639489 created "2020-11-09" @default.
- W3094639489 creator A5071859028 @default.
- W3094639489 creator A5091149690 @default.
- W3094639489 date "2020-11-03" @default.
- W3094639489 modified "2023-09-25" @default.
- W3094639489 title "Transferable MP2-Based Machine Learning for Accurate Coupled-Cluster Energies" @default.
- W3094639489 cites W1482410246 @default.
- W3094639489 cites W1493045480 @default.
- W3094639489 cites W1531674615 @default.
- W3094639489 cites W1971044734 @default.
- W3094639489 cites W1971920777 @default.
- W3094639489 cites W1999440372 @default.
- W3094639489 cites W2012121165 @default.
- W3094639489 cites W2014240026 @default.
- W3094639489 cites W2015115007 @default.
- W3094639489 cites W2015541791 @default.
- W3094639489 cites W2016612689 @default.
- W3094639489 cites W2018674598 @default.
- W3094639489 cites W2020786104 @default.
- W3094639489 cites W2026858719 @default.
- W3094639489 cites W2029413789 @default.
- W3094639489 cites W2034097448 @default.
- W3094639489 cites W2036060950 @default.
- W3094639489 cites W2040134477 @default.
- W3094639489 cites W2042008904 @default.
- W3094639489 cites W2046412723 @default.
- W3094639489 cites W2048022201 @default.
- W3094639489 cites W2053541017 @default.
- W3094639489 cites W2060490427 @default.
- W3094639489 cites W2063007245 @default.
- W3094639489 cites W2069006374 @default.
- W3094639489 cites W2078511427 @default.
- W3094639489 cites W2080503082 @default.
- W3094639489 cites W2080635178 @default.
- W3094639489 cites W2080965534 @default.
- W3094639489 cites W2084062334 @default.
- W3094639489 cites W2087404659 @default.
- W3094639489 cites W2090509231 @default.
- W3094639489 cites W2090564140 @default.
- W3094639489 cites W2092196700 @default.
- W3094639489 cites W2104489082 @default.
- W3094639489 cites W2105616783 @default.
- W3094639489 cites W2130437470 @default.
- W3094639489 cites W2143271000 @default.
- W3094639489 cites W2174060224 @default.
- W3094639489 cites W2225949634 @default.
- W3094639489 cites W2291965314 @default.
- W3094639489 cites W2321842368 @default.
- W3094639489 cites W2395817013 @default.
- W3094639489 cites W2519744985 @default.
- W3094639489 cites W2547447472 @default.
- W3094639489 cites W2565212977 @default.
- W3094639489 cites W2604906708 @default.
- W3094639489 cites W2620687153 @default.
- W3094639489 cites W2749580687 @default.
- W3094639489 cites W2760024123 @default.
- W3094639489 cites W2775684663 @default.
- W3094639489 cites W2775714759 @default.
- W3094639489 cites W2784889365 @default.
- W3094639489 cites W2785813126 @default.
- W3094639489 cites W2786308452 @default.
- W3094639489 cites W2790736812 @default.
- W3094639489 cites W2790808809 @default.
- W3094639489 cites W2792348590 @default.
- W3094639489 cites W2794704841 @default.
- W3094639489 cites W2795068716 @default.
- W3094639489 cites W2799567665 @default.
- W3094639489 cites W2800873928 @default.
- W3094639489 cites W2803627340 @default.
- W3094639489 cites W2805401872 @default.
- W3094639489 cites W2806843381 @default.
- W3094639489 cites W2810062942 @default.
- W3094639489 cites W2855672246 @default.
- W3094639489 cites W2885400989 @default.
- W3094639489 cites W2889632381 @default.
- W3094639489 cites W2900369799 @default.
- W3094639489 cites W2902645795 @default.
- W3094639489 cites W2913155913 @default.
- W3094639489 cites W2917193084 @default.
- W3094639489 cites W2921533983 @default.
- W3094639489 cites W2923101335 @default.
- W3094639489 cites W2943843211 @default.
- W3094639489 cites W2953636677 @default.
- W3094639489 cites W2964268718 @default.
- W3094639489 cites W2964677890 @default.
- W3094639489 cites W2968071222 @default.
- W3094639489 cites W2970397043 @default.
- W3094639489 cites W2972737649 @default.
- W3094639489 cites W2981035673 @default.
- W3094639489 cites W2982140779 @default.
- W3094639489 cites W2984234582 @default.
- W3094639489 cites W3000086210 @default.
- W3094639489 cites W3004987440 @default.
- W3094639489 cites W3005419229 @default.
- W3094639489 cites W3010488723 @default.
- W3094639489 cites W3012320417 @default.
- W3094639489 cites W3016908833 @default.