Matches in SemOpenAlex for { <https://semopenalex.org/work/W3094658932> ?p ?o ?g. }
- W3094658932 endingPage "3507" @default.
- W3094658932 startingPage "3507" @default.
- W3094658932 abstract "Land surface temperature (LST) plays a fundamental role in various geophysical processes at varying spatial and temporal scales. Satellite-based observations of LST provide a viable option for monitoring the spatial-temporal evolution of these processes. Downscaling is a widely adopted approach for solving the spatial-temporal trade-off associated with satellite-based observations of LST. However, despite the advances made in the field of LST downscaling, issues related to spatial averaging in the downscaling methodologies greatly hamper the utility of coarse-resolution thermal data for downscaling applications in complex environments. In this study, an improved LST downscaling approach based on random forest (RF) regression is presented. The proposed approach addresses issues related to spatial averaging biases associated with the downscaling model developed at the coarse resolution. The approach was applied to downscale the coarse-resolution Satellite Application Facility on Land Surface Analysis (LSA-SAF) LST product derived from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensor aboard the Meteosat Second Generation (MSG) weather satellite. The LSA-SAF product was downscaled to a spatial resolution of ~30 m, based on predictor variables derived from Sentinel 2, and the Advanced Land Observing Satellite (ALOS) digital elevation model (DEM). Quantitatively and qualitatively, better downscaling results were obtained using the proposed approach in comparison to the conventional approach of downscaling LST using RF widely adopted in LST downscaling studies. The enhanced performance indicates that the proposed approach has the ability to reduce the spatial averaging biases inherent in the LST downscaling methodology and thus is more suitable for downscaling applications in complex environments." @default.
- W3094658932 created "2020-11-09" @default.
- W3094658932 creator A5037183827 @default.
- W3094658932 creator A5050161159 @default.
- W3094658932 creator A5063131478 @default.
- W3094658932 date "2020-10-25" @default.
- W3094658932 modified "2023-10-18" @default.
- W3094658932 title "An Improved Approach for Downscaling Coarse-Resolution Thermal Data by Minimizing the Spatial Averaging Biases in Random Forest" @default.
- W3094658932 cites W1481588771 @default.
- W3094658932 cites W1565635109 @default.
- W3094658932 cites W1964217023 @default.
- W3094658932 cites W1966383444 @default.
- W3094658932 cites W1967395374 @default.
- W3094658932 cites W1972690365 @default.
- W3094658932 cites W1978617972 @default.
- W3094658932 cites W1990330790 @default.
- W3094658932 cites W1996043099 @default.
- W3094658932 cites W1998457169 @default.
- W3094658932 cites W2014630223 @default.
- W3094658932 cites W2015978071 @default.
- W3094658932 cites W2024479554 @default.
- W3094658932 cites W2026337749 @default.
- W3094658932 cites W2044609898 @default.
- W3094658932 cites W2051798177 @default.
- W3094658932 cites W2068371905 @default.
- W3094658932 cites W2077509829 @default.
- W3094658932 cites W2078426240 @default.
- W3094658932 cites W2090976648 @default.
- W3094658932 cites W2091374137 @default.
- W3094658932 cites W2095055020 @default.
- W3094658932 cites W2103541076 @default.
- W3094658932 cites W2113410727 @default.
- W3094658932 cites W2116327754 @default.
- W3094658932 cites W2119204870 @default.
- W3094658932 cites W2143426320 @default.
- W3094658932 cites W2143481518 @default.
- W3094658932 cites W2152516985 @default.
- W3094658932 cites W2156049446 @default.
- W3094658932 cites W2169278316 @default.
- W3094658932 cites W2230887875 @default.
- W3094658932 cites W2233818796 @default.
- W3094658932 cites W2301692565 @default.
- W3094658932 cites W2370020776 @default.
- W3094658932 cites W2555779650 @default.
- W3094658932 cites W2560880499 @default.
- W3094658932 cites W2583769957 @default.
- W3094658932 cites W2741291720 @default.
- W3094658932 cites W2746924719 @default.
- W3094658932 cites W2774322389 @default.
- W3094658932 cites W2779585676 @default.
- W3094658932 cites W2789673541 @default.
- W3094658932 cites W2791988131 @default.
- W3094658932 cites W2793017234 @default.
- W3094658932 cites W2808839797 @default.
- W3094658932 cites W2904391595 @default.
- W3094658932 cites W2909007985 @default.
- W3094658932 cites W2911964244 @default.
- W3094658932 cites W2918246750 @default.
- W3094658932 cites W2943160824 @default.
- W3094658932 cites W2949744317 @default.
- W3094658932 cites W2955234118 @default.
- W3094658932 cites W2991457291 @default.
- W3094658932 cites W3014481749 @default.
- W3094658932 cites W4239884961 @default.
- W3094658932 doi "https://doi.org/10.3390/rs12213507" @default.
- W3094658932 hasPublicationYear "2020" @default.
- W3094658932 type Work @default.
- W3094658932 sameAs 3094658932 @default.
- W3094658932 citedByCount "6" @default.
- W3094658932 countsByYear W30946589322021 @default.
- W3094658932 countsByYear W30946589322022 @default.
- W3094658932 countsByYear W30946589322023 @default.
- W3094658932 crossrefType "journal-article" @default.
- W3094658932 hasAuthorship W3094658932A5037183827 @default.
- W3094658932 hasAuthorship W3094658932A5050161159 @default.
- W3094658932 hasAuthorship W3094658932A5063131478 @default.
- W3094658932 hasBestOaLocation W30946589321 @default.
- W3094658932 hasConcept C107054158 @default.
- W3094658932 hasConcept C127313418 @default.
- W3094658932 hasConcept C127413603 @default.
- W3094658932 hasConcept C146978453 @default.
- W3094658932 hasConcept C153294291 @default.
- W3094658932 hasConcept C154945302 @default.
- W3094658932 hasConcept C19269812 @default.
- W3094658932 hasConcept C205372480 @default.
- W3094658932 hasConcept C205649164 @default.
- W3094658932 hasConcept C39432304 @default.
- W3094658932 hasConcept C41008148 @default.
- W3094658932 hasConcept C41156917 @default.
- W3094658932 hasConcept C49204034 @default.
- W3094658932 hasConcept C62649853 @default.
- W3094658932 hasConceptScore W3094658932C107054158 @default.
- W3094658932 hasConceptScore W3094658932C127313418 @default.
- W3094658932 hasConceptScore W3094658932C127413603 @default.
- W3094658932 hasConceptScore W3094658932C146978453 @default.
- W3094658932 hasConceptScore W3094658932C153294291 @default.
- W3094658932 hasConceptScore W3094658932C154945302 @default.
- W3094658932 hasConceptScore W3094658932C19269812 @default.