Matches in SemOpenAlex for { <https://semopenalex.org/work/W3094679349> ?p ?o ?g. }
- W3094679349 endingPage "90" @default.
- W3094679349 startingPage "75" @default.
- W3094679349 abstract "In modern globe, medical image analysis significantly participates in diagnosis process. In general, it involves five processes, such as medical image classification, medical image detection, medical image segmentation, medical image registration, and medical image localization. Medical imaging uses in diagnosis process for most of the human body organs, such as brain tumor, chest, breast, colonoscopy, retinal, and many other cases relate to medical image analysis using various modalities. Multi-modality images include magnetic resonance imaging, single photon emission computed tomography (CT), positron emission tomography, optical coherence tomography, confocal laser endoscopy, magnetic resonance spectroscopy, CT, X-ray, wireless capsule endoscopy, breast cancer, papanicolaou smear, hyper spectral image, and ultrasound use to diagnose different body organs and cases. Medical image analysis is appropriate environment to interact with automate intelligent system technologies. Among the intelligent systems deep learning (DL) is the modern one to manipulate medical image analysis processes and processing an image into fundamental components to extract meaningful information. The best model to establish its systems is deep convolutional neural network. This study relied on reviewing of some of these studies because of these reasons; improvements of medical imaging increase demand on automate systems of medical image analysis using DL, in most tested cases, accuracy of intelligent methods especially DL methods higher than accuracy of hand-crafted works. Furthermore, manually works need a lot of time compare to systematic diagnosis." @default.
- W3094679349 created "2020-11-09" @default.
- W3094679349 creator A5029090335 @default.
- W3094679349 creator A5084997163 @default.
- W3094679349 date "2020-08-27" @default.
- W3094679349 modified "2023-10-02" @default.
- W3094679349 title "Review Research of Medical Image Analysis Using Deep Learning" @default.
- W3094679349 cites W1884191083 @default.
- W3094679349 cites W1994221311 @default.
- W3094679349 cites W2021707668 @default.
- W3094679349 cites W2108870824 @default.
- W3094679349 cites W2131346203 @default.
- W3094679349 cites W2150903265 @default.
- W3094679349 cites W2183519733 @default.
- W3094679349 cites W2232162527 @default.
- W3094679349 cites W2295256730 @default.
- W3094679349 cites W2343122418 @default.
- W3094679349 cites W2343884194 @default.
- W3094679349 cites W2346062110 @default.
- W3094679349 cites W2431269190 @default.
- W3094679349 cites W2529926598 @default.
- W3094679349 cites W2533800772 @default.
- W3094679349 cites W2561981131 @default.
- W3094679349 cites W2592929672 @default.
- W3094679349 cites W2731899572 @default.
- W3094679349 cites W2734419111 @default.
- W3094679349 cites W2734847897 @default.
- W3094679349 cites W2735145835 @default.
- W3094679349 cites W2735975467 @default.
- W3094679349 cites W2736273512 @default.
- W3094679349 cites W2760516000 @default.
- W3094679349 cites W2770044960 @default.
- W3094679349 cites W2777186991 @default.
- W3094679349 cites W2780099243 @default.
- W3094679349 cites W2783388784 @default.
- W3094679349 cites W2784851205 @default.
- W3094679349 cites W2790944260 @default.
- W3094679349 cites W2791424304 @default.
- W3094679349 cites W2792423806 @default.
- W3094679349 cites W2800691917 @default.
- W3094679349 cites W2809254203 @default.
- W3094679349 cites W2809596283 @default.
- W3094679349 cites W2885355900 @default.
- W3094679349 cites W2887680499 @default.
- W3094679349 cites W2890741060 @default.
- W3094679349 cites W2893069623 @default.
- W3094679349 cites W2895266044 @default.
- W3094679349 cites W2906302663 @default.
- W3094679349 cites W2907010598 @default.
- W3094679349 cites W2907632336 @default.
- W3094679349 cites W2912354537 @default.
- W3094679349 cites W2916740872 @default.
- W3094679349 cites W2945587898 @default.
- W3094679349 cites W2946053491 @default.
- W3094679349 cites W2947735999 @default.
- W3094679349 cites W2948542848 @default.
- W3094679349 cites W2948577176 @default.
- W3094679349 cites W2958150439 @default.
- W3094679349 cites W2959887484 @default.
- W3094679349 cites W2960033437 @default.
- W3094679349 cites W2964118901 @default.
- W3094679349 cites W2966864081 @default.
- W3094679349 cites W2972191609 @default.
- W3094679349 cites W2995942064 @default.
- W3094679349 cites W3000524228 @default.
- W3094679349 cites W3105282616 @default.
- W3094679349 doi "https://doi.org/10.21928/uhdjst.v4n2y2020.pp75-90" @default.
- W3094679349 hasPublicationYear "2020" @default.
- W3094679349 type Work @default.
- W3094679349 sameAs 3094679349 @default.
- W3094679349 citedByCount "2" @default.
- W3094679349 countsByYear W30946793492023 @default.
- W3094679349 crossrefType "journal-article" @default.
- W3094679349 hasAuthorship W3094679349A5029090335 @default.
- W3094679349 hasAuthorship W3094679349A5084997163 @default.
- W3094679349 hasBestOaLocation W30946793491 @default.
- W3094679349 hasConcept C108583219 @default.
- W3094679349 hasConcept C115961682 @default.
- W3094679349 hasConcept C126838900 @default.
- W3094679349 hasConcept C143409427 @default.
- W3094679349 hasConcept C154945302 @default.
- W3094679349 hasConcept C19527891 @default.
- W3094679349 hasConcept C2778818243 @default.
- W3094679349 hasConcept C31601959 @default.
- W3094679349 hasConcept C31972630 @default.
- W3094679349 hasConcept C41008148 @default.
- W3094679349 hasConcept C69744172 @default.
- W3094679349 hasConcept C71924100 @default.
- W3094679349 hasConcept C81363708 @default.
- W3094679349 hasConcept C9417928 @default.
- W3094679349 hasConceptScore W3094679349C108583219 @default.
- W3094679349 hasConceptScore W3094679349C115961682 @default.
- W3094679349 hasConceptScore W3094679349C126838900 @default.
- W3094679349 hasConceptScore W3094679349C143409427 @default.
- W3094679349 hasConceptScore W3094679349C154945302 @default.
- W3094679349 hasConceptScore W3094679349C19527891 @default.
- W3094679349 hasConceptScore W3094679349C2778818243 @default.
- W3094679349 hasConceptScore W3094679349C31601959 @default.