Matches in SemOpenAlex for { <https://semopenalex.org/work/W3094682697> ?p ?o ?g. }
- W3094682697 endingPage "100218" @default.
- W3094682697 startingPage "100218" @default.
- W3094682697 abstract "Conventional photoacoustic imaging may suffer from the limited view and bandwidth of ultrasound transducers. A deep learning approach is proposed to handle these problems and is demonstrated both in simulations and in experiments on a multi-scale model of leaf skeleton. We employed an experimental approach to build the training and the test sets using photographs of the samples as ground truth images. Reconstructions produced by the neural network show a greatly improved image quality as compared to conventional approaches. In addition, this work aimed at quantifying the reliability of the neural network predictions. To achieve this, the dropout Monte-Carlo procedure is applied to estimate a pixel-wise degree of confidence on each predicted picture. Last, we address the possibility to use transfer learning with simulated data in order to drastically limit the size of the experimental dataset." @default.
- W3094682697 created "2020-11-09" @default.
- W3094682697 creator A5004929612 @default.
- W3094682697 creator A5020375818 @default.
- W3094682697 creator A5057753169 @default.
- W3094682697 date "2021-03-01" @default.
- W3094682697 modified "2023-10-12" @default.
- W3094682697 title "Compensating for visibility artefacts in photoacoustic imaging with a deep learning approach providing prediction uncertainties" @default.
- W3094682697 cites W1903029394 @default.
- W3094682697 cites W1973866134 @default.
- W3094682697 cites W1977761755 @default.
- W3094682697 cites W2032375794 @default.
- W3094682697 cites W2037370232 @default.
- W3094682697 cites W2041812800 @default.
- W3094682697 cites W2095648002 @default.
- W3094682697 cites W2100556411 @default.
- W3094682697 cites W2112796928 @default.
- W3094682697 cites W2117539524 @default.
- W3094682697 cites W2133665775 @default.
- W3094682697 cites W2142683286 @default.
- W3094682697 cites W2157048271 @default.
- W3094682697 cites W2535943285 @default.
- W3094682697 cites W2562155294 @default.
- W3094682697 cites W2574952845 @default.
- W3094682697 cites W2618577570 @default.
- W3094682697 cites W2621028221 @default.
- W3094682697 cites W2751563926 @default.
- W3094682697 cites W2766609443 @default.
- W3094682697 cites W2799460839 @default.
- W3094682697 cites W2805392478 @default.
- W3094682697 cites W2904160377 @default.
- W3094682697 cites W2909560691 @default.
- W3094682697 cites W2954588378 @default.
- W3094682697 cites W2962850795 @default.
- W3094682697 cites W2963363021 @default.
- W3094682697 cites W2974799347 @default.
- W3094682697 cites W2991035351 @default.
- W3094682697 cites W3000703107 @default.
- W3094682697 cites W3007268491 @default.
- W3094682697 cites W3012228525 @default.
- W3094682697 cites W3016604817 @default.
- W3094682697 cites W3025806813 @default.
- W3094682697 cites W3080539213 @default.
- W3094682697 cites W3101678053 @default.
- W3094682697 doi "https://doi.org/10.1016/j.pacs.2020.100218" @default.
- W3094682697 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7750172" @default.
- W3094682697 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33364161" @default.
- W3094682697 hasPublicationYear "2021" @default.
- W3094682697 type Work @default.
- W3094682697 sameAs 3094682697 @default.
- W3094682697 citedByCount "22" @default.
- W3094682697 countsByYear W30946826972020 @default.
- W3094682697 countsByYear W30946826972021 @default.
- W3094682697 countsByYear W30946826972022 @default.
- W3094682697 countsByYear W30946826972023 @default.
- W3094682697 crossrefType "journal-article" @default.
- W3094682697 hasAuthorship W3094682697A5004929612 @default.
- W3094682697 hasAuthorship W3094682697A5020375818 @default.
- W3094682697 hasAuthorship W3094682697A5057753169 @default.
- W3094682697 hasBestOaLocation W30946826971 @default.
- W3094682697 hasConcept C105795698 @default.
- W3094682697 hasConcept C108583219 @default.
- W3094682697 hasConcept C115961682 @default.
- W3094682697 hasConcept C119857082 @default.
- W3094682697 hasConcept C120665830 @default.
- W3094682697 hasConcept C121332964 @default.
- W3094682697 hasConcept C123403432 @default.
- W3094682697 hasConcept C146849305 @default.
- W3094682697 hasConcept C150899416 @default.
- W3094682697 hasConcept C154945302 @default.
- W3094682697 hasConcept C160633673 @default.
- W3094682697 hasConcept C163258240 @default.
- W3094682697 hasConcept C19499675 @default.
- W3094682697 hasConcept C2776145597 @default.
- W3094682697 hasConcept C2776257435 @default.
- W3094682697 hasConcept C31258907 @default.
- W3094682697 hasConcept C31972630 @default.
- W3094682697 hasConcept C33923547 @default.
- W3094682697 hasConcept C41008148 @default.
- W3094682697 hasConcept C43214815 @default.
- W3094682697 hasConcept C50644808 @default.
- W3094682697 hasConcept C54932901 @default.
- W3094682697 hasConcept C55020928 @default.
- W3094682697 hasConcept C62520636 @default.
- W3094682697 hasConceptScore W3094682697C105795698 @default.
- W3094682697 hasConceptScore W3094682697C108583219 @default.
- W3094682697 hasConceptScore W3094682697C115961682 @default.
- W3094682697 hasConceptScore W3094682697C119857082 @default.
- W3094682697 hasConceptScore W3094682697C120665830 @default.
- W3094682697 hasConceptScore W3094682697C121332964 @default.
- W3094682697 hasConceptScore W3094682697C123403432 @default.
- W3094682697 hasConceptScore W3094682697C146849305 @default.
- W3094682697 hasConceptScore W3094682697C150899416 @default.
- W3094682697 hasConceptScore W3094682697C154945302 @default.
- W3094682697 hasConceptScore W3094682697C160633673 @default.
- W3094682697 hasConceptScore W3094682697C163258240 @default.
- W3094682697 hasConceptScore W3094682697C19499675 @default.
- W3094682697 hasConceptScore W3094682697C2776145597 @default.