Matches in SemOpenAlex for { <https://semopenalex.org/work/W3094727520> ?p ?o ?g. }
- W3094727520 endingPage "150" @default.
- W3094727520 startingPage "144" @default.
- W3094727520 abstract "Purpose (Chemo)–radiotherapy (RT) is the gold standard treatment for patients with locally advanced lung cancer non accessible for surgery. However, current toxicity prediction models rely on clinical and dose volume histograms (DVHs) and remain unsufficient. The goal of this work is to investigate the added predictive value of the radiomics approach applied to dose maps regarding acute and late toxicities in both the lungs and esophagus. Methods Acute and late toxicities scored using the CTCAE v4.0 were retrospectively collected on patients treated with RT in our institution. Radiomic features were extracted from 3D dose maps considering Gy values as grey-levels in images. DVH and usual clinical factors were also considered. Three toxicity prediction models (clinical only, clinical + DVH and combined, i.e., including clinical + DVH + radiomics) were incrementally trained using a neural network on 70% of the patients for prediction of grade ≥2 acute and late pulmonary toxicities (APT/LPT) and grade ≥2 acute esophageal toxicities (AET). After bootstrapping (n = 1000), optimal cut-off values were determined based on the Youden Index. The trained models were then evaluated in the remaining 30% of patients using balanced accuracy (BAcc). Results 167 patients were treated from 2015 to 2018: 78% non small-cell lung cancers, 14% small-cell lung cancers and 8% other histology with a median age at treatment of 66 years. Respectively, 22.2%, 16.8% and 30.0% experienced APT, LPT and AET. In the training set (n = 117), the corresponding BAcc for clinical only/clinical + DVH/combined were 0.68/0.79/0.92, 0.66/0.77/0.87 and 0.68/0.73/0.84. In the testing evaluation (n = 50), these trained models obtained a corresponding BAcc of 0.69/0.69/0.92, 0.76/0.80/0.89 and 0.58/0.73/0.72. Conclusion In patients with a lung cancer treated with RT, radiomic features extracted from 3D dose maps seem to surpass usual models based on clinical factors and DVHs for the prediction of APT and LPT." @default.
- W3094727520 created "2020-11-09" @default.
- W3094727520 creator A5002799061 @default.
- W3094727520 creator A5007574901 @default.
- W3094727520 creator A5007752240 @default.
- W3094727520 creator A5017138072 @default.
- W3094727520 creator A5023117952 @default.
- W3094727520 creator A5023602346 @default.
- W3094727520 creator A5029673123 @default.
- W3094727520 creator A5055606113 @default.
- W3094727520 creator A5055621953 @default.
- W3094727520 creator A5065181686 @default.
- W3094727520 date "2021-02-01" @default.
- W3094727520 modified "2023-10-15" @default.
- W3094727520 title "Radiomics analysis of 3D dose distributions to predict toxicity of radiotherapy for lung cancer" @default.
- W3094727520 cites W1645880751 @default.
- W3094727520 cites W1813193713 @default.
- W3094727520 cites W1963989756 @default.
- W3094727520 cites W1997947210 @default.
- W3094727520 cites W2012796013 @default.
- W3094727520 cites W2019570186 @default.
- W3094727520 cites W2037171241 @default.
- W3094727520 cites W2047037517 @default.
- W3094727520 cites W2067989944 @default.
- W3094727520 cites W2103254456 @default.
- W3094727520 cites W2105052480 @default.
- W3094727520 cites W2128739912 @default.
- W3094727520 cites W2156835537 @default.
- W3094727520 cites W2164902895 @default.
- W3094727520 cites W2197357450 @default.
- W3094727520 cites W2296139876 @default.
- W3094727520 cites W2345989174 @default.
- W3094727520 cites W2558078631 @default.
- W3094727520 cites W2789956930 @default.
- W3094727520 cites W2808910874 @default.
- W3094727520 cites W2886576904 @default.
- W3094727520 cites W2889646458 @default.
- W3094727520 cites W2903595815 @default.
- W3094727520 cites W2912734771 @default.
- W3094727520 cites W2916265158 @default.
- W3094727520 cites W2939674254 @default.
- W3094727520 cites W2947421847 @default.
- W3094727520 cites W2960157166 @default.
- W3094727520 cites W2998789541 @default.
- W3094727520 cites W4242599633 @default.
- W3094727520 doi "https://doi.org/10.1016/j.radonc.2020.10.040" @default.
- W3094727520 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33161012" @default.
- W3094727520 hasPublicationYear "2021" @default.
- W3094727520 type Work @default.
- W3094727520 sameAs 3094727520 @default.
- W3094727520 citedByCount "25" @default.
- W3094727520 countsByYear W30947275202021 @default.
- W3094727520 countsByYear W30947275202022 @default.
- W3094727520 countsByYear W30947275202023 @default.
- W3094727520 crossrefType "journal-article" @default.
- W3094727520 hasAuthorship W3094727520A5002799061 @default.
- W3094727520 hasAuthorship W3094727520A5007574901 @default.
- W3094727520 hasAuthorship W3094727520A5007752240 @default.
- W3094727520 hasAuthorship W3094727520A5017138072 @default.
- W3094727520 hasAuthorship W3094727520A5023117952 @default.
- W3094727520 hasAuthorship W3094727520A5023602346 @default.
- W3094727520 hasAuthorship W3094727520A5029673123 @default.
- W3094727520 hasAuthorship W3094727520A5055606113 @default.
- W3094727520 hasAuthorship W3094727520A5055621953 @default.
- W3094727520 hasAuthorship W3094727520A5065181686 @default.
- W3094727520 hasBestOaLocation W30947275201 @default.
- W3094727520 hasConcept C126322002 @default.
- W3094727520 hasConcept C126838900 @default.
- W3094727520 hasConcept C143998085 @default.
- W3094727520 hasConcept C2776256026 @default.
- W3094727520 hasConcept C2777714996 @default.
- W3094727520 hasConcept C2778559731 @default.
- W3094727520 hasConcept C2989005 @default.
- W3094727520 hasConcept C34626388 @default.
- W3094727520 hasConcept C509974204 @default.
- W3094727520 hasConcept C71924100 @default.
- W3094727520 hasConceptScore W3094727520C126322002 @default.
- W3094727520 hasConceptScore W3094727520C126838900 @default.
- W3094727520 hasConceptScore W3094727520C143998085 @default.
- W3094727520 hasConceptScore W3094727520C2776256026 @default.
- W3094727520 hasConceptScore W3094727520C2777714996 @default.
- W3094727520 hasConceptScore W3094727520C2778559731 @default.
- W3094727520 hasConceptScore W3094727520C2989005 @default.
- W3094727520 hasConceptScore W3094727520C34626388 @default.
- W3094727520 hasConceptScore W3094727520C509974204 @default.
- W3094727520 hasConceptScore W3094727520C71924100 @default.
- W3094727520 hasLocation W30947275201 @default.
- W3094727520 hasLocation W30947275202 @default.
- W3094727520 hasLocation W30947275203 @default.
- W3094727520 hasLocation W30947275204 @default.
- W3094727520 hasLocation W30947275205 @default.
- W3094727520 hasOpenAccess W3094727520 @default.
- W3094727520 hasPrimaryLocation W30947275201 @default.
- W3094727520 hasRelatedWork W1970018641 @default.
- W3094727520 hasRelatedWork W1993821226 @default.
- W3094727520 hasRelatedWork W1999313618 @default.
- W3094727520 hasRelatedWork W2004029742 @default.
- W3094727520 hasRelatedWork W2063908487 @default.