Matches in SemOpenAlex for { <https://semopenalex.org/work/W3094845396> ?p ?o ?g. }
- W3094845396 endingPage "381" @default.
- W3094845396 startingPage "369" @default.
- W3094845396 abstract "<i>Background:</i> RNA secondary structures play a pivotal role in posttranscriptional regulation and the functions of non-coding RNAs, yet <i>in vivo</i> RNA secondary structures remain enigmatic. PARIS (Psoralen Analysis of RNA Interactions and Structures) is a recently developed high-throughput sequencing-based approach that enables direct capture of RNA duplex structures <i>in vivo</i>. However, the existence of incompatible, fuzzy pairing information obstructs the integration of PARIS data with the existing tools for reconstructing RNA secondary structure models at the single-base resolution. <i>Methods: </i>We introduce IRIS, a method for predicting RNA secondary structure ensembles based on PARIS data. IRIS generates a large set of candidate RNA secondary structure models under the guidance of redistributed PARIS reads and then uses a Bayesian model to identify the optimal ensemble, according to both thermodynamic principles and PARIS data. <i>Results:</i> The predicted RNA structure ensembles by IRIS have been verified based on evolutionary conservation information and consistency with other experimental RNA structural data. IRIS is implemented in Python and freely available at http://iris.zhanglab.net. <i>Conclusion:</i> IRIS capitalizes upon PARIS data to improve the prediction of <i>in vivo</i> RNA secondary structure ensembles. We expect that IRIS will enhance the application of the PARIS technology and shed more insight on <i>in vivo</i> RNA secondary structures." @default.
- W3094845396 created "2020-11-09" @default.
- W3094845396 creator A5011702824 @default.
- W3094845396 creator A5019900972 @default.
- W3094845396 creator A5034479728 @default.
- W3094845396 creator A5064373045 @default.
- W3094845396 creator A5074903674 @default.
- W3094845396 creator A5077808955 @default.
- W3094845396 creator A5086290413 @default.
- W3094845396 creator A5090682121 @default.
- W3094845396 date "2020-10-31" @default.
- W3094845396 modified "2023-09-25" @default.
- W3094845396 title "IRIS: A method for predicting in vivo RNA secondary structures using PARIS data" @default.
- W3094845396 cites W1481166764 @default.
- W3094845396 cites W1542426682 @default.
- W3094845396 cites W1543796220 @default.
- W3094845396 cites W1822105579 @default.
- W3094845396 cites W1954585750 @default.
- W3094845396 cites W1965243792 @default.
- W3094845396 cites W1967005434 @default.
- W3094845396 cites W1974454061 @default.
- W3094845396 cites W1981576666 @default.
- W3094845396 cites W1984675364 @default.
- W3094845396 cites W1988884185 @default.
- W3094845396 cites W2003993220 @default.
- W3094845396 cites W2011301426 @default.
- W3094845396 cites W2025746238 @default.
- W3094845396 cites W2060208193 @default.
- W3094845396 cites W2068205741 @default.
- W3094845396 cites W2071883352 @default.
- W3094845396 cites W2076091642 @default.
- W3094845396 cites W2076756368 @default.
- W3094845396 cites W2097924797 @default.
- W3094845396 cites W2098571862 @default.
- W3094845396 cites W2102017611 @default.
- W3094845396 cites W2103250001 @default.
- W3094845396 cites W2105052346 @default.
- W3094845396 cites W2131848438 @default.
- W3094845396 cites W2137640371 @default.
- W3094845396 cites W2138059105 @default.
- W3094845396 cites W2141157874 @default.
- W3094845396 cites W2141807666 @default.
- W3094845396 cites W2142217851 @default.
- W3094845396 cites W2143407915 @default.
- W3094845396 cites W2146721220 @default.
- W3094845396 cites W2169456326 @default.
- W3094845396 cites W2233915997 @default.
- W3094845396 cites W2342878844 @default.
- W3094845396 cites W2363081453 @default.
- W3094845396 cites W2383534773 @default.
- W3094845396 cites W2388201280 @default.
- W3094845396 cites W2416488948 @default.
- W3094845396 cites W2463016798 @default.
- W3094845396 cites W2537672245 @default.
- W3094845396 cites W2554065905 @default.
- W3094845396 cites W2618108760 @default.
- W3094845396 cites W2725568163 @default.
- W3094845396 cites W2766848373 @default.
- W3094845396 cites W2767581192 @default.
- W3094845396 cites W2783205930 @default.
- W3094845396 cites W2807674901 @default.
- W3094845396 cites W2883782161 @default.
- W3094845396 cites W2886301812 @default.
- W3094845396 cites W2949249029 @default.
- W3094845396 cites W2950156524 @default.
- W3094845396 cites W2951298881 @default.
- W3094845396 cites W2979742573 @default.
- W3094845396 cites W2990528340 @default.
- W3094845396 cites W3103145119 @default.
- W3094845396 cites W3122583070 @default.
- W3094845396 cites W4254491045 @default.
- W3094845396 doi "https://doi.org/10.1007/s40484-020-0223-4" @default.
- W3094845396 hasPublicationYear "2020" @default.
- W3094845396 type Work @default.
- W3094845396 sameAs 3094845396 @default.
- W3094845396 citedByCount "10" @default.
- W3094845396 countsByYear W30948453962021 @default.
- W3094845396 countsByYear W30948453962022 @default.
- W3094845396 countsByYear W30948453962023 @default.
- W3094845396 crossrefType "journal-article" @default.
- W3094845396 hasAuthorship W3094845396A5011702824 @default.
- W3094845396 hasAuthorship W3094845396A5019900972 @default.
- W3094845396 hasAuthorship W3094845396A5034479728 @default.
- W3094845396 hasAuthorship W3094845396A5064373045 @default.
- W3094845396 hasAuthorship W3094845396A5074903674 @default.
- W3094845396 hasAuthorship W3094845396A5077808955 @default.
- W3094845396 hasAuthorship W3094845396A5086290413 @default.
- W3094845396 hasAuthorship W3094845396A5090682121 @default.
- W3094845396 hasBestOaLocation W30948453961 @default.
- W3094845396 hasConcept C104317684 @default.
- W3094845396 hasConcept C126142528 @default.
- W3094845396 hasConcept C154945302 @default.
- W3094845396 hasConcept C184297639 @default.
- W3094845396 hasConcept C2779503344 @default.
- W3094845396 hasConcept C41008148 @default.
- W3094845396 hasConcept C54355233 @default.
- W3094845396 hasConcept C55493867 @default.
- W3094845396 hasConcept C62614982 @default.