Matches in SemOpenAlex for { <https://semopenalex.org/work/W3094857757> ?p ?o ?g. }
- W3094857757 endingPage "3121" @default.
- W3094857757 startingPage "3098" @default.
- W3094857757 abstract "This paper studies noisy low-rank matrix completion: given partial and noisy entries of a large low-rank matrix, the goal is to estimate the underlying matrix faithfully and efficiently. Arguably one of the most popular paradigms to tackle this problem is convex relaxation, which achieves remarkable efficacy in practice. However, the theoretical support of this approach is still far from optimal in the noisy setting, falling short of explaining its empirical success. We make progress towards demystifying the practical efficacy of convex relaxation vis-à-vis random noise. When the rank and the condition number of the unknown matrix are bounded by a constant, we demonstrate that the convex programming approach achieves near-optimal estimation errors---in terms of the Euclidean loss, the entrywise loss, and the spectral norm loss---for a wide range of noise levels. All of this is enabled by bridging convex relaxation with the nonconvex Burer--Monteiro approach, a seemingly distinct algorithmic paradigm that is provably robust against noise. More specifically, we show that an approximate critical point of the nonconvex formulation serves as an extremely tight approximation of the convex solution, thus allowing us to transfer the desired statistical guarantees of the nonconvex approach to its convex counterpart." @default.
- W3094857757 created "2020-11-09" @default.
- W3094857757 creator A5019973935 @default.
- W3094857757 creator A5031910872 @default.
- W3094857757 creator A5053809095 @default.
- W3094857757 creator A5065195251 @default.
- W3094857757 creator A5074490643 @default.
- W3094857757 date "2020-01-01" @default.
- W3094857757 modified "2023-10-15" @default.
- W3094857757 title "Noisy Matrix Completion: Understanding Statistical Guarantees for Convex Relaxation via Nonconvex Optimization" @default.
- W3094857757 cites W1532323952 @default.
- W3094857757 cites W1545868355 @default.
- W3094857757 cites W1878263927 @default.
- W3094857757 cites W1997840761 @default.
- W3094857757 cites W2000157792 @default.
- W3094857757 cites W2002605354 @default.
- W3094857757 cites W2006145698 @default.
- W3094857757 cites W2011359124 @default.
- W3094857757 cites W2031906930 @default.
- W3094857757 cites W2040373108 @default.
- W3094857757 cites W2044666483 @default.
- W3094857757 cites W2047071281 @default.
- W3094857757 cites W2049371785 @default.
- W3094857757 cites W2058078260 @default.
- W3094857757 cites W2059283452 @default.
- W3094857757 cites W2060204507 @default.
- W3094857757 cites W2077430220 @default.
- W3094857757 cites W2084745075 @default.
- W3094857757 cites W2100556411 @default.
- W3094857757 cites W2103972604 @default.
- W3094857757 cites W2112659545 @default.
- W3094857757 cites W2118550318 @default.
- W3094857757 cites W2134332047 @default.
- W3094857757 cites W2138835141 @default.
- W3094857757 cites W2140867429 @default.
- W3094857757 cites W2143075842 @default.
- W3094857757 cites W2143703915 @default.
- W3094857757 cites W2145962650 @default.
- W3094857757 cites W2157400927 @default.
- W3094857757 cites W2158121106 @default.
- W3094857757 cites W2171046470 @default.
- W3094857757 cites W2268674159 @default.
- W3094857757 cites W2542482481 @default.
- W3094857757 cites W2566608758 @default.
- W3094857757 cites W2581138301 @default.
- W3094857757 cites W2598300585 @default.
- W3094857757 cites W2608011286 @default.
- W3094857757 cites W2611328865 @default.
- W3094857757 cites W2740586183 @default.
- W3094857757 cites W2768927505 @default.
- W3094857757 cites W2785436244 @default.
- W3094857757 cites W2810541051 @default.
- W3094857757 cites W2918965983 @default.
- W3094857757 cites W2962694024 @default.
- W3094857757 cites W2962769133 @default.
- W3094857757 cites W2962818938 @default.
- W3094857757 cites W2963426032 @default.
- W3094857757 cites W2963669167 @default.
- W3094857757 cites W2963829083 @default.
- W3094857757 cites W2963840025 @default.
- W3094857757 cites W2964014592 @default.
- W3094857757 cites W2969215180 @default.
- W3094857757 cites W2982569731 @default.
- W3094857757 cites W3005119431 @default.
- W3094857757 cites W3043617248 @default.
- W3094857757 cites W3098807808 @default.
- W3094857757 cites W3099973750 @default.
- W3094857757 cites W3102206315 @default.
- W3094857757 cites W3102810310 @default.
- W3094857757 cites W3104501706 @default.
- W3094857757 cites W3104624268 @default.
- W3094857757 cites W3104684837 @default.
- W3094857757 cites W3106271742 @default.
- W3094857757 cites W3121936541 @default.
- W3094857757 cites W3123272904 @default.
- W3094857757 cites W3138835833 @default.
- W3094857757 cites W4230371388 @default.
- W3094857757 cites W4244393449 @default.
- W3094857757 doi "https://doi.org/10.1137/19m1290000" @default.
- W3094857757 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8300474" @default.
- W3094857757 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34305368" @default.
- W3094857757 hasPublicationYear "2020" @default.
- W3094857757 type Work @default.
- W3094857757 sameAs 3094857757 @default.
- W3094857757 citedByCount "54" @default.
- W3094857757 countsByYear W30948577572019 @default.
- W3094857757 countsByYear W30948577572020 @default.
- W3094857757 countsByYear W30948577572021 @default.
- W3094857757 countsByYear W30948577572022 @default.
- W3094857757 countsByYear W30948577572023 @default.
- W3094857757 crossrefType "journal-article" @default.
- W3094857757 hasAuthorship W3094857757A5019973935 @default.
- W3094857757 hasAuthorship W3094857757A5031910872 @default.
- W3094857757 hasAuthorship W3094857757A5053809095 @default.
- W3094857757 hasAuthorship W3094857757A5065195251 @default.
- W3094857757 hasAuthorship W3094857757A5074490643 @default.
- W3094857757 hasBestOaLocation W30948577571 @default.
- W3094857757 hasConcept C106487976 @default.