Matches in SemOpenAlex for { <https://semopenalex.org/work/W3094920651> ?p ?o ?g. }
- W3094920651 endingPage "106580" @default.
- W3094920651 startingPage "106580" @default.
- W3094920651 abstract "Accurate river flow forecasting is of great importance for the scientific management of water resources system. With the advantages of easy implementation and high flexibility, artificial neural network (ANN) has been widely employed to address the complex hydrological forecasting problem. However, the conventional ANN method often suffers from some defects in practice, like slow convergence and local minimum. In order to enhance the ANN performance, this study proposes a hybrid river flow forecasting method by integrating the novel cooperation search algorithm (CSA) into the learning process of ANN. In other words, the computational parameters of the ANN network (like threshold and linking weights) are iteratively optimized by the CSA method in the feasible state space. The proposed method is applied to the river flow data collected from two real-world hydrological stations in China. Several Quantitative indexes are chosen to compare the performance of the developed models, while the comprehensive analysis between the simulated and observed flow data are conducted. The experimental results show that in different scenarios, the hybrid method based on ANN and CSA always outperforms the control models and yields superior forecasting results during both training and testing phases. In Three Gorges Project, the presented method makes 11.10% and 5.42% improvements in the Nash–Sutcliffe efficiency and Coefficient correlation values of the standard ANN method in the testing phase. Thus, this interesting finding shows that the performance of the artificial intelligence models in river flow time series forecasting can be effectively improved by metaheuristic algorithm with outstanding global search ability." @default.
- W3094920651 created "2020-11-09" @default.
- W3094920651 creator A5018542086 @default.
- W3094920651 creator A5079367813 @default.
- W3094920651 date "2021-01-01" @default.
- W3094920651 modified "2023-10-18" @default.
- W3094920651 title "Hybrid artificial neural network and cooperation search algorithm for nonlinear river flow time series forecasting in humid and semi-humid regions" @default.
- W3094920651 cites W1589475696 @default.
- W3094920651 cites W1864468960 @default.
- W3094920651 cites W1907137599 @default.
- W3094920651 cites W1969895389 @default.
- W3094920651 cites W1971926909 @default.
- W3094920651 cites W1980430798 @default.
- W3094920651 cites W1998687326 @default.
- W3094920651 cites W2020174716 @default.
- W3094920651 cites W2022593990 @default.
- W3094920651 cites W2040493565 @default.
- W3094920651 cites W2044781495 @default.
- W3094920651 cites W2045466925 @default.
- W3094920651 cites W2055173761 @default.
- W3094920651 cites W2055412520 @default.
- W3094920651 cites W2057018326 @default.
- W3094920651 cites W2061607792 @default.
- W3094920651 cites W2062972613 @default.
- W3094920651 cites W2072665078 @default.
- W3094920651 cites W2116422023 @default.
- W3094920651 cites W2141695047 @default.
- W3094920651 cites W2143003743 @default.
- W3094920651 cites W2153580266 @default.
- W3094920651 cites W2272889908 @default.
- W3094920651 cites W2398078376 @default.
- W3094920651 cites W2547378489 @default.
- W3094920651 cites W2593080009 @default.
- W3094920651 cites W2597355745 @default.
- W3094920651 cites W2745003183 @default.
- W3094920651 cites W2751355674 @default.
- W3094920651 cites W2771997790 @default.
- W3094920651 cites W2775405370 @default.
- W3094920651 cites W2775445647 @default.
- W3094920651 cites W2783443666 @default.
- W3094920651 cites W2789639895 @default.
- W3094920651 cites W2793804326 @default.
- W3094920651 cites W2796301380 @default.
- W3094920651 cites W2798242991 @default.
- W3094920651 cites W2802523290 @default.
- W3094920651 cites W2806613313 @default.
- W3094920651 cites W2807115920 @default.
- W3094920651 cites W2809460593 @default.
- W3094920651 cites W2889227713 @default.
- W3094920651 cites W2902248801 @default.
- W3094920651 cites W2943022179 @default.
- W3094920651 cites W2945997207 @default.
- W3094920651 cites W2955275303 @default.
- W3094920651 cites W2958456210 @default.
- W3094920651 cites W2959915043 @default.
- W3094920651 cites W2969226653 @default.
- W3094920651 cites W2991743256 @default.
- W3094920651 cites W2993658734 @default.
- W3094920651 cites W2998139435 @default.
- W3094920651 cites W3003576014 @default.
- W3094920651 cites W3004442222 @default.
- W3094920651 cites W3005275992 @default.
- W3094920651 cites W3007415262 @default.
- W3094920651 cites W3022712343 @default.
- W3094920651 cites W3081579994 @default.
- W3094920651 cites W3087304432 @default.
- W3094920651 cites W3087325074 @default.
- W3094920651 cites W3088474652 @default.
- W3094920651 cites W3094193625 @default.
- W3094920651 cites W996106850 @default.
- W3094920651 cites W2087617549 @default.
- W3094920651 doi "https://doi.org/10.1016/j.knosys.2020.106580" @default.
- W3094920651 hasPublicationYear "2021" @default.
- W3094920651 type Work @default.
- W3094920651 sameAs 3094920651 @default.
- W3094920651 citedByCount "42" @default.
- W3094920651 countsByYear W30949206512021 @default.
- W3094920651 countsByYear W30949206512022 @default.
- W3094920651 countsByYear W30949206512023 @default.
- W3094920651 crossrefType "journal-article" @default.
- W3094920651 hasAuthorship W3094920651A5018542086 @default.
- W3094920651 hasAuthorship W3094920651A5079367813 @default.
- W3094920651 hasConcept C105795698 @default.
- W3094920651 hasConcept C111919701 @default.
- W3094920651 hasConcept C11413529 @default.
- W3094920651 hasConcept C119857082 @default.
- W3094920651 hasConcept C121332964 @default.
- W3094920651 hasConcept C124101348 @default.
- W3094920651 hasConcept C126255220 @default.
- W3094920651 hasConcept C126645576 @default.
- W3094920651 hasConcept C151406439 @default.
- W3094920651 hasConcept C154945302 @default.
- W3094920651 hasConcept C158622935 @default.
- W3094920651 hasConcept C162324750 @default.
- W3094920651 hasConcept C205649164 @default.
- W3094920651 hasConcept C2777303404 @default.
- W3094920651 hasConcept C2780598303 @default.
- W3094920651 hasConcept C33923547 @default.