Matches in SemOpenAlex for { <https://semopenalex.org/work/W3094936770> ?p ?o ?g. }
- W3094936770 endingPage "101939" @default.
- W3094936770 startingPage "101939" @default.
- W3094936770 abstract "Cyanobacterial harmful algal blooms (cyanoHABs) continue to increase in frequency and magnitude, threatening global freshwater ecosystems and services. In north-temperate lakes cyanobacteria appear in early summer, succeeding green algae as the dominant phytoplankton group, a pattern thought to be mediated by changes in temperature and bioavailable nutrients. To understand additional drivers of this successional pattern our study used reciprocal invasion experiments to examine the competitive interaction between Microcystis aeruginosa, a dominant contributor to cyanoHABs, and the green alga Chlorella sorokiniana. We considered two factors that may impact these interactions: (1) strain variation, with a specific emphasis on the presence or absence of the gene for the hepatotoxin microcystin, and (2) host-associated bacteria. We used toxic M. aeruginosa PCC 7806 (microcystin producing strain), a non-toxic mutant of PCC 7806, non-toxic M. aeruginosa PCC 9701 (non-microcystin producing strain), and C. sorokiniana. Each organism was available free of all bacteria (i.e., axenic) and with a re-introduced defined bacterial community to generate their xenic counterparts. Competitive interactions were assessed with reciprocal invasion experiments between paired xenic and paired axenic populations of C. sorokiniana and one of the two Microcystis strains, each assessed separately. Flow cytometry and random forest models were used to rapidly discriminate and quantify phytoplankton population densities with 99% accuracy. We found that M. aeruginosa PCC 7806, but not strain PCC 9701, could proliferate from low abundance in a steady-state population of C. sorokiniana. Further, the presence of bacteria allowed M. aeruginosa PCC 7806 to grow to a higher population density into an established C. sorokiniana population than when grown axenic. Conversely, when M. aeruginosa was dominant, C. sorokiniana was only able to proliferate from low density into the PCC 9701 strain, and only when axenic. The mutant of PCC 7806 lacking the ability to produce microcystin behaved similarly to the toxic wild-type, implying microcystin is not responsible for the difference in competitive abilities observed between the two wild-type strains. Quantification of microcystins (MCs) when PCC 7806 M. aeruginosa was introduced into the C. sorokiniana culture showed two-fold more MCs per cell when host-associated bacteria were absent compared to present in both species cultures. Our results show that the ability of M. aeruginosa to compete with C. sorokiniana is determined by genomic differences beyond genes involved in microcystin toxin generation and indicate an important role of host-associated bacteria in mediating phytoplankton interspecies interactions. These results expand our understanding of the key drivers of phytoplankton succession and the establishment and persistence of freshwater harmful cyanobacterial blooms." @default.
- W3094936770 created "2020-11-09" @default.
- W3094936770 creator A5031958741 @default.
- W3094936770 creator A5033151097 @default.
- W3094936770 creator A5075036643 @default.
- W3094936770 creator A5082586013 @default.
- W3094936770 creator A5084209072 @default.
- W3094936770 date "2020-11-01" @default.
- W3094936770 modified "2023-10-18" @default.
- W3094936770 title "Genotype and host microbiome alter competitive interactions between Microcystis aeruginosa and Chlorella sorokiniana" @default.
- W3094936770 cites W1470407018 @default.
- W3094936770 cites W1514188891 @default.
- W3094936770 cites W1529767675 @default.
- W3094936770 cites W1726174962 @default.
- W3094936770 cites W1776522971 @default.
- W3094936770 cites W1786219966 @default.
- W3094936770 cites W1946171492 @default.
- W3094936770 cites W1963578203 @default.
- W3094936770 cites W1964561454 @default.
- W3094936770 cites W1967534727 @default.
- W3094936770 cites W1980877579 @default.
- W3094936770 cites W1981985232 @default.
- W3094936770 cites W1990839717 @default.
- W3094936770 cites W2002048638 @default.
- W3094936770 cites W2010164661 @default.
- W3094936770 cites W2031475954 @default.
- W3094936770 cites W2041959912 @default.
- W3094936770 cites W2043593166 @default.
- W3094936770 cites W2049630700 @default.
- W3094936770 cites W2050566588 @default.
- W3094936770 cites W2053969230 @default.
- W3094936770 cites W2070261599 @default.
- W3094936770 cites W2075173283 @default.
- W3094936770 cites W2075784822 @default.
- W3094936770 cites W2077088153 @default.
- W3094936770 cites W2080101008 @default.
- W3094936770 cites W2082851797 @default.
- W3094936770 cites W2091155042 @default.
- W3094936770 cites W2099306070 @default.
- W3094936770 cites W2105002747 @default.
- W3094936770 cites W2105654779 @default.
- W3094936770 cites W2110594762 @default.
- W3094936770 cites W2113143895 @default.
- W3094936770 cites W2113162751 @default.
- W3094936770 cites W2125303562 @default.
- W3094936770 cites W2137439980 @default.
- W3094936770 cites W2150597302 @default.
- W3094936770 cites W2150610114 @default.
- W3094936770 cites W2154583481 @default.
- W3094936770 cites W2157279140 @default.
- W3094936770 cites W2159942570 @default.
- W3094936770 cites W2164675645 @default.
- W3094936770 cites W2165409794 @default.
- W3094936770 cites W2169048626 @default.
- W3094936770 cites W2169175623 @default.
- W3094936770 cites W2170170241 @default.
- W3094936770 cites W2170405598 @default.
- W3094936770 cites W2170529028 @default.
- W3094936770 cites W2171020267 @default.
- W3094936770 cites W2175409656 @default.
- W3094936770 cites W2188082055 @default.
- W3094936770 cites W2347420599 @default.
- W3094936770 cites W2358484769 @default.
- W3094936770 cites W2370584049 @default.
- W3094936770 cites W2402885289 @default.
- W3094936770 cites W2467532039 @default.
- W3094936770 cites W2506071332 @default.
- W3094936770 cites W2558780409 @default.
- W3094936770 cites W2588560462 @default.
- W3094936770 cites W2605723514 @default.
- W3094936770 cites W2617520563 @default.
- W3094936770 cites W2619169015 @default.
- W3094936770 cites W2619795915 @default.
- W3094936770 cites W2745468079 @default.
- W3094936770 cites W2762013959 @default.
- W3094936770 cites W2763889010 @default.
- W3094936770 cites W2774782346 @default.
- W3094936770 cites W2797462633 @default.
- W3094936770 cites W2883631392 @default.
- W3094936770 cites W2887288734 @default.
- W3094936770 cites W2900835319 @default.
- W3094936770 cites W2900891103 @default.
- W3094936770 cites W2906605390 @default.
- W3094936770 cites W2913163092 @default.
- W3094936770 cites W2920376117 @default.
- W3094936770 cites W2937134080 @default.
- W3094936770 cites W2963828142 @default.
- W3094936770 cites W2965214956 @default.
- W3094936770 cites W2969796736 @default.
- W3094936770 cites W2973117714 @default.
- W3094936770 cites W2990301633 @default.
- W3094936770 cites W2993859458 @default.
- W3094936770 cites W2998003668 @default.
- W3094936770 cites W3002667019 @default.
- W3094936770 cites W3048896849 @default.
- W3094936770 cites W4211010233 @default.
- W3094936770 doi "https://doi.org/10.1016/j.hal.2020.101939" @default.
- W3094936770 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33218432" @default.