Matches in SemOpenAlex for { <https://semopenalex.org/work/W3094958980> ?p ?o ?g. }
- W3094958980 endingPage "47" @default.
- W3094958980 startingPage "37" @default.
- W3094958980 abstract "This article presents a neurodynamic approach to nonlinear programming. Motivated by the idea of sequential quadratic programming, a class of two-timescale multilayer recurrent neural networks is presented with neuronal dynamics in their output layer operating at a bigger timescale than in their hidden layers. In the two-timescale multilayer recurrent neural networks, the transient states in the hidden layer(s) undergo faster dynamics than those in the output layer. Sufficient conditions are derived on the convergence of the two-timescale multilayer recurrent neural networks to local optima of nonlinear programming problems. Simulation results of collaborative neurodynamic optimization based on the two-timescale neurodynamic approach on global optimization problems with nonconvex objective functions or constraints are discussed to substantiate the efficacy of the two-timescale neurodynamic approach." @default.
- W3094958980 created "2020-11-09" @default.
- W3094958980 creator A5042241049 @default.
- W3094958980 creator A5081850690 @default.
- W3094958980 date "2022-01-01" @default.
- W3094958980 modified "2023-10-18" @default.
- W3094958980 title "Two-Timescale Multilayer Recurrent Neural Networks for Nonlinear Programming" @default.
- W3094958980 cites W1559956479 @default.
- W3094958980 cites W1597286183 @default.
- W3094958980 cites W1891771308 @default.
- W3094958980 cites W1979660814 @default.
- W3094958980 cites W1982157348 @default.
- W3094958980 cites W1991832796 @default.
- W3094958980 cites W2011474549 @default.
- W3094958980 cites W2023059010 @default.
- W3094958980 cites W2038883765 @default.
- W3094958980 cites W2048723778 @default.
- W3094958980 cites W2058804598 @default.
- W3094958980 cites W2077847045 @default.
- W3094958980 cites W2085919628 @default.
- W3094958980 cites W2085932691 @default.
- W3094958980 cites W2091339772 @default.
- W3094958980 cites W2094364653 @default.
- W3094958980 cites W2097113878 @default.
- W3094958980 cites W2101251466 @default.
- W3094958980 cites W2108186760 @default.
- W3094958980 cites W2108658536 @default.
- W3094958980 cites W2108814972 @default.
- W3094958980 cites W2110663062 @default.
- W3094958980 cites W2111986387 @default.
- W3094958980 cites W2118204568 @default.
- W3094958980 cites W2132021010 @default.
- W3094958980 cites W2132450099 @default.
- W3094958980 cites W2136438446 @default.
- W3094958980 cites W2144305242 @default.
- W3094958980 cites W2149416133 @default.
- W3094958980 cites W2149974730 @default.
- W3094958980 cites W2150872461 @default.
- W3094958980 cites W2152555602 @default.
- W3094958980 cites W2153119881 @default.
- W3094958980 cites W2155395335 @default.
- W3094958980 cites W2158810475 @default.
- W3094958980 cites W2162123037 @default.
- W3094958980 cites W2168386785 @default.
- W3094958980 cites W2193394111 @default.
- W3094958980 cites W2242049308 @default.
- W3094958980 cites W2316653816 @default.
- W3094958980 cites W2316765862 @default.
- W3094958980 cites W2345063733 @default.
- W3094958980 cites W2405909743 @default.
- W3094958980 cites W2515014135 @default.
- W3094958980 cites W2584604366 @default.
- W3094958980 cites W2624600449 @default.
- W3094958980 cites W2766228189 @default.
- W3094958980 cites W2790401551 @default.
- W3094958980 cites W2883731169 @default.
- W3094958980 cites W2906898454 @default.
- W3094958980 cites W2915522415 @default.
- W3094958980 cites W2968881461 @default.
- W3094958980 cites W2997320126 @default.
- W3094958980 cites W4250589301 @default.
- W3094958980 doi "https://doi.org/10.1109/tnnls.2020.3027471" @default.
- W3094958980 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33108292" @default.
- W3094958980 hasPublicationYear "2022" @default.
- W3094958980 type Work @default.
- W3094958980 sameAs 3094958980 @default.
- W3094958980 citedByCount "6" @default.
- W3094958980 countsByYear W30949589802021 @default.
- W3094958980 countsByYear W30949589802022 @default.
- W3094958980 countsByYear W30949589802023 @default.
- W3094958980 crossrefType "journal-article" @default.
- W3094958980 hasAuthorship W3094958980A5042241049 @default.
- W3094958980 hasAuthorship W3094958980A5081850690 @default.
- W3094958980 hasConcept C11413529 @default.
- W3094958980 hasConcept C115527620 @default.
- W3094958980 hasConcept C121332964 @default.
- W3094958980 hasConcept C126255220 @default.
- W3094958980 hasConcept C141934464 @default.
- W3094958980 hasConcept C147168706 @default.
- W3094958980 hasConcept C154945302 @default.
- W3094958980 hasConcept C158622935 @default.
- W3094958980 hasConcept C162324750 @default.
- W3094958980 hasConcept C2777303404 @default.
- W3094958980 hasConcept C33923547 @default.
- W3094958980 hasConcept C37404715 @default.
- W3094958980 hasConcept C41008148 @default.
- W3094958980 hasConcept C50522688 @default.
- W3094958980 hasConcept C50644808 @default.
- W3094958980 hasConcept C62520636 @default.
- W3094958980 hasConcept C81845259 @default.
- W3094958980 hasConceptScore W3094958980C11413529 @default.
- W3094958980 hasConceptScore W3094958980C115527620 @default.
- W3094958980 hasConceptScore W3094958980C121332964 @default.
- W3094958980 hasConceptScore W3094958980C126255220 @default.
- W3094958980 hasConceptScore W3094958980C141934464 @default.
- W3094958980 hasConceptScore W3094958980C147168706 @default.
- W3094958980 hasConceptScore W3094958980C154945302 @default.
- W3094958980 hasConceptScore W3094958980C158622935 @default.