Matches in SemOpenAlex for { <https://semopenalex.org/work/W3094977690> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3094977690 endingPage "101890" @default.
- W3094977690 startingPage "101890" @default.
- W3094977690 abstract "We propose HookNet, a semantic segmentation model for histopathology whole-slide images, which combines context and details via multiple branches of encoder-decoder convolutional neural networks. Concentric patches at multiple resolutions with different fields of view, feed different branches of HookNet, and intermediate representations are combined via a hooking mechanism. We describe a framework to design and train HookNet for achieving high-resolution semantic segmentation and introduce constraints to guarantee pixel-wise alignment in feature maps during hooking. We show the advantages of using HookNet in two histopathology image segmentation tasks where tissue type prediction accuracy strongly depends on contextual information, namely (1) multi-class tissue segmentation in breast cancer and, (2) segmentation of tertiary lymphoid structures and germinal centers in lung cancer. We show the superiority of HookNet when compared with single-resolution U-Net models working at different resolutions as well as with a recently published multi-resolution model for histopathology image segmentation. We have made HookNet publicly available by releasing the source code1 as well as in the form of web-based applications2,3 based on the grand-challenge.org platform." @default.
- W3094977690 created "2020-11-09" @default.
- W3094977690 creator A5002905948 @default.
- W3094977690 creator A5009366591 @default.
- W3094977690 creator A5032516206 @default.
- W3094977690 creator A5046360521 @default.
- W3094977690 creator A5081003438 @default.
- W3094977690 date "2021-02-01" @default.
- W3094977690 modified "2023-10-11" @default.
- W3094977690 title "HookNet: Multi-resolution convolutional neural networks for semantic segmentation in histopathology whole-slide images" @default.
- W3094977690 cites W1859257957 @default.
- W3094977690 cites W1903029394 @default.
- W3094977690 cites W1986919315 @default.
- W3094977690 cites W2120431466 @default.
- W3094977690 cites W2142300779 @default.
- W3094977690 cites W2278082019 @default.
- W3094977690 cites W2412782625 @default.
- W3094977690 cites W2521492299 @default.
- W3094977690 cites W2535388113 @default.
- W3094977690 cites W2559597482 @default.
- W3094977690 cites W2779312016 @default.
- W3094977690 cites W2805886241 @default.
- W3094977690 cites W2806587241 @default.
- W3094977690 cites W3099287508 @default.
- W3094977690 doi "https://doi.org/10.1016/j.media.2020.101890" @default.
- W3094977690 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33260110" @default.
- W3094977690 hasPublicationYear "2021" @default.
- W3094977690 type Work @default.
- W3094977690 sameAs 3094977690 @default.
- W3094977690 citedByCount "72" @default.
- W3094977690 countsByYear W30949776902012 @default.
- W3094977690 countsByYear W30949776902021 @default.
- W3094977690 countsByYear W30949776902022 @default.
- W3094977690 countsByYear W30949776902023 @default.
- W3094977690 crossrefType "journal-article" @default.
- W3094977690 hasAuthorship W3094977690A5002905948 @default.
- W3094977690 hasAuthorship W3094977690A5009366591 @default.
- W3094977690 hasAuthorship W3094977690A5032516206 @default.
- W3094977690 hasAuthorship W3094977690A5046360521 @default.
- W3094977690 hasAuthorship W3094977690A5081003438 @default.
- W3094977690 hasBestOaLocation W30949776901 @default.
- W3094977690 hasConcept C124504099 @default.
- W3094977690 hasConcept C151730666 @default.
- W3094977690 hasConcept C153180895 @default.
- W3094977690 hasConcept C154945302 @default.
- W3094977690 hasConcept C25694479 @default.
- W3094977690 hasConcept C2779343474 @default.
- W3094977690 hasConcept C31972630 @default.
- W3094977690 hasConcept C41008148 @default.
- W3094977690 hasConcept C65885262 @default.
- W3094977690 hasConcept C81363708 @default.
- W3094977690 hasConcept C86803240 @default.
- W3094977690 hasConcept C89600930 @default.
- W3094977690 hasConceptScore W3094977690C124504099 @default.
- W3094977690 hasConceptScore W3094977690C151730666 @default.
- W3094977690 hasConceptScore W3094977690C153180895 @default.
- W3094977690 hasConceptScore W3094977690C154945302 @default.
- W3094977690 hasConceptScore W3094977690C25694479 @default.
- W3094977690 hasConceptScore W3094977690C2779343474 @default.
- W3094977690 hasConceptScore W3094977690C31972630 @default.
- W3094977690 hasConceptScore W3094977690C41008148 @default.
- W3094977690 hasConceptScore W3094977690C65885262 @default.
- W3094977690 hasConceptScore W3094977690C81363708 @default.
- W3094977690 hasConceptScore W3094977690C86803240 @default.
- W3094977690 hasConceptScore W3094977690C89600930 @default.
- W3094977690 hasFunder F4320322777 @default.
- W3094977690 hasFunder F4320335254 @default.
- W3094977690 hasLocation W30949776901 @default.
- W3094977690 hasLocation W30949776902 @default.
- W3094977690 hasLocation W30949776903 @default.
- W3094977690 hasLocation W30949776904 @default.
- W3094977690 hasOpenAccess W3094977690 @default.
- W3094977690 hasPrimaryLocation W30949776901 @default.
- W3094977690 hasRelatedWork W1999008862 @default.
- W3094977690 hasRelatedWork W2103507220 @default.
- W3094977690 hasRelatedWork W2185902295 @default.
- W3094977690 hasRelatedWork W2371519352 @default.
- W3094977690 hasRelatedWork W2386644571 @default.
- W3094977690 hasRelatedWork W2551987074 @default.
- W3094977690 hasRelatedWork W2785294226 @default.
- W3094977690 hasRelatedWork W2945274617 @default.
- W3094977690 hasRelatedWork W3144569342 @default.
- W3094977690 hasRelatedWork W4205800335 @default.
- W3094977690 hasVolume "68" @default.
- W3094977690 isParatext "false" @default.
- W3094977690 isRetracted "false" @default.
- W3094977690 magId "3094977690" @default.
- W3094977690 workType "article" @default.