Matches in SemOpenAlex for { <https://semopenalex.org/work/W3094997652> ?p ?o ?g. }
- W3094997652 endingPage "108665" @default.
- W3094997652 startingPage "108665" @default.
- W3094997652 abstract "The accurate prediction of pressure has extensive applications in the petroleum industry, especially in the optimization of continuous field production, quantifying reservoir performance, adjusting the cost of oil production and assessment of workover operations. On the other hand, the complexity associated with the two-phase flow system makes the computational determination of bottom-hole pressure difficult and time-consuming, so in the current work, two novel machine learning approaches based on Gradient tree boosting (GTB) and Extreme Learning Machine (ELM) have been proposed. The comparison of 458 actual pressure values and proposed GTB and ELM outputs has clarified that machine learning approaches have excellent performance in oil field calculations with R-squared values of 1 and 0.999 and also mean relative errors lower than 4% for these models. Additionally, sensitivity analysis on the input variables shows that the most effective parameter in the determination of bottom-hole pressure is well-head pressure." @default.
- W3094997652 created "2020-11-09" @default.
- W3094997652 creator A5013097925 @default.
- W3094997652 creator A5072047674 @default.
- W3094997652 date "2021-03-01" @default.
- W3094997652 modified "2023-09-27" @default.
- W3094997652 title "Prediction of pressure in different two-phase flow conditions: Machine learning applications" @default.
- W3094997652 cites W1750490368 @default.
- W3094997652 cites W1976883852 @default.
- W3094997652 cites W1977439921 @default.
- W3094997652 cites W1983423327 @default.
- W3094997652 cites W1988936884 @default.
- W3094997652 cites W1998477104 @default.
- W3094997652 cites W2012589271 @default.
- W3094997652 cites W2017040119 @default.
- W3094997652 cites W2022578046 @default.
- W3094997652 cites W2025702300 @default.
- W3094997652 cites W2057201640 @default.
- W3094997652 cites W2069821648 @default.
- W3094997652 cites W2070493638 @default.
- W3094997652 cites W2078672691 @default.
- W3094997652 cites W2092112646 @default.
- W3094997652 cites W2111072639 @default.
- W3094997652 cites W2616957629 @default.
- W3094997652 cites W2778944745 @default.
- W3094997652 cites W2803512689 @default.
- W3094997652 cites W2808338577 @default.
- W3094997652 cites W2884066732 @default.
- W3094997652 cites W2889821621 @default.
- W3094997652 cites W2902520339 @default.
- W3094997652 cites W2937303660 @default.
- W3094997652 cites W2960179461 @default.
- W3094997652 cites W2969537986 @default.
- W3094997652 cites W2984862309 @default.
- W3094997652 cites W2989826852 @default.
- W3094997652 cites W3004345877 @default.
- W3094997652 cites W3004837573 @default.
- W3094997652 cites W3012200623 @default.
- W3094997652 cites W3036378184 @default.
- W3094997652 cites W3140564856 @default.
- W3094997652 cites W4231109964 @default.
- W3094997652 doi "https://doi.org/10.1016/j.measurement.2020.108665" @default.
- W3094997652 hasPublicationYear "2021" @default.
- W3094997652 type Work @default.
- W3094997652 sameAs 3094997652 @default.
- W3094997652 citedByCount "17" @default.
- W3094997652 countsByYear W30949976522021 @default.
- W3094997652 countsByYear W30949976522022 @default.
- W3094997652 countsByYear W30949976522023 @default.
- W3094997652 crossrefType "journal-article" @default.
- W3094997652 hasAuthorship W3094997652A5013097925 @default.
- W3094997652 hasAuthorship W3094997652A5072047674 @default.
- W3094997652 hasConcept C111368507 @default.
- W3094997652 hasConcept C11413529 @default.
- W3094997652 hasConcept C114793014 @default.
- W3094997652 hasConcept C119857082 @default.
- W3094997652 hasConcept C127313418 @default.
- W3094997652 hasConcept C127413603 @default.
- W3094997652 hasConcept C154945302 @default.
- W3094997652 hasConcept C169258074 @default.
- W3094997652 hasConcept C21200559 @default.
- W3094997652 hasConcept C24326235 @default.
- W3094997652 hasConcept C2524010 @default.
- W3094997652 hasConcept C2776364302 @default.
- W3094997652 hasConcept C2780150128 @default.
- W3094997652 hasConcept C2780312720 @default.
- W3094997652 hasConcept C33451869 @default.
- W3094997652 hasConcept C33923547 @default.
- W3094997652 hasConcept C38349280 @default.
- W3094997652 hasConcept C41008148 @default.
- W3094997652 hasConcept C46686674 @default.
- W3094997652 hasConcept C50644808 @default.
- W3094997652 hasConcept C70153297 @default.
- W3094997652 hasConcept C78762247 @default.
- W3094997652 hasConcept C98156149 @default.
- W3094997652 hasConceptScore W3094997652C111368507 @default.
- W3094997652 hasConceptScore W3094997652C11413529 @default.
- W3094997652 hasConceptScore W3094997652C114793014 @default.
- W3094997652 hasConceptScore W3094997652C119857082 @default.
- W3094997652 hasConceptScore W3094997652C127313418 @default.
- W3094997652 hasConceptScore W3094997652C127413603 @default.
- W3094997652 hasConceptScore W3094997652C154945302 @default.
- W3094997652 hasConceptScore W3094997652C169258074 @default.
- W3094997652 hasConceptScore W3094997652C21200559 @default.
- W3094997652 hasConceptScore W3094997652C24326235 @default.
- W3094997652 hasConceptScore W3094997652C2524010 @default.
- W3094997652 hasConceptScore W3094997652C2776364302 @default.
- W3094997652 hasConceptScore W3094997652C2780150128 @default.
- W3094997652 hasConceptScore W3094997652C2780312720 @default.
- W3094997652 hasConceptScore W3094997652C33451869 @default.
- W3094997652 hasConceptScore W3094997652C33923547 @default.
- W3094997652 hasConceptScore W3094997652C38349280 @default.
- W3094997652 hasConceptScore W3094997652C41008148 @default.
- W3094997652 hasConceptScore W3094997652C46686674 @default.
- W3094997652 hasConceptScore W3094997652C50644808 @default.
- W3094997652 hasConceptScore W3094997652C70153297 @default.
- W3094997652 hasConceptScore W3094997652C78762247 @default.
- W3094997652 hasConceptScore W3094997652C98156149 @default.