Matches in SemOpenAlex for { <https://semopenalex.org/work/W3095020816> ?p ?o ?g. }
- W3095020816 abstract "Background Symptoms of serious mental illness are multidimensional and often interact in complex ways. Generative models offer value in elucidating the underlying relationships that characterise these networks of symptoms. Aims In this paper we use generative models to find unique interactions of schizophrenia symptoms as experienced on a moment-by-moment basis. Method Self-reported mood, anxiety and psychosis symptoms, self-reported measurements of sleep quality and social function, cognitive assessment, and smartphone touch screen data from two assessments modelled after the Trail Making A and B tests were collected with a digital phenotyping app for 47 patients in active treatment for schizophrenia over a 90-day period. Patients were retrospectively divided up into various non-exclusive subgroups based on measurements of depression, anxiety, sleep duration, cognition and psychosis symptoms taken in the clinic. Associated transition probabilities for the patient cohort and for the clinical subgroups were calculated using state transitions between adjacent 3-day timesteps of pairwise survey domains. Results The three highest probabilities for associated transitions across all patients were anxiety-inducing mood (0.357, P < 0.001), psychosis-inducing mood (0.276, P < 0.001), and anxiety-inducing poor sleep (0.268, P < 0.001). These transition probabilities were compared against a validation set of 17 patients from a pilot study, and no significant differences were found. Unique symptom networks were found for clinical subgroups. Conclusions Using a generative model using digital phenotyping data, we show that certain symptoms of schizophrenia may play a role in elevating other schizophrenia symptoms in future timesteps. Symptom networks show that it is feasible to create clinically interpretable models that reflect the unique symptom interactions of psychosis-spectrum illness. These results offer a framework for researchers capturing temporal dynamics, for clinicians seeking to move towards preventative care, and for patients to better understand their lived experience." @default.
- W3095020816 created "2020-11-09" @default.
- W3095020816 creator A5000706062 @default.
- W3095020816 creator A5026523515 @default.
- W3095020816 creator A5034581713 @default.
- W3095020816 creator A5036531810 @default.
- W3095020816 date "2020-11-01" @default.
- W3095020816 modified "2023-10-10" @default.
- W3095020816 title "Deriving symptom networks from digital phenotyping data in serious mental illness" @default.
- W3095020816 cites W1457595327 @default.
- W3095020816 cites W1965374197 @default.
- W3095020816 cites W1978508380 @default.
- W3095020816 cites W1978549608 @default.
- W3095020816 cites W1984885556 @default.
- W3095020816 cites W2008062633 @default.
- W3095020816 cites W2043705607 @default.
- W3095020816 cites W2073323534 @default.
- W3095020816 cites W2105347849 @default.
- W3095020816 cites W2132322340 @default.
- W3095020816 cites W2132883301 @default.
- W3095020816 cites W2140606211 @default.
- W3095020816 cites W2151487996 @default.
- W3095020816 cites W2276520418 @default.
- W3095020816 cites W2558231871 @default.
- W3095020816 cites W2565624541 @default.
- W3095020816 cites W2587253292 @default.
- W3095020816 cites W2592797645 @default.
- W3095020816 cites W2604699010 @default.
- W3095020816 cites W2615778791 @default.
- W3095020816 cites W2749468538 @default.
- W3095020816 cites W2763922718 @default.
- W3095020816 cites W2767417220 @default.
- W3095020816 cites W2768067512 @default.
- W3095020816 cites W2771867526 @default.
- W3095020816 cites W2791936566 @default.
- W3095020816 cites W2792224659 @default.
- W3095020816 cites W2796284606 @default.
- W3095020816 cites W2855659753 @default.
- W3095020816 cites W2882452492 @default.
- W3095020816 cites W2893275441 @default.
- W3095020816 cites W2903691885 @default.
- W3095020816 cites W2916037546 @default.
- W3095020816 cites W2929646074 @default.
- W3095020816 cites W2939696729 @default.
- W3095020816 cites W2941322871 @default.
- W3095020816 cites W2941525596 @default.
- W3095020816 cites W2943744106 @default.
- W3095020816 cites W2947975219 @default.
- W3095020816 cites W2951556346 @default.
- W3095020816 cites W2957730340 @default.
- W3095020816 cites W2963284032 @default.
- W3095020816 cites W2967155064 @default.
- W3095020816 cites W3038416215 @default.
- W3095020816 doi "https://doi.org/10.1192/bjo.2020.94" @default.
- W3095020816 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7745255" @default.
- W3095020816 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33138889" @default.
- W3095020816 hasPublicationYear "2020" @default.
- W3095020816 type Work @default.
- W3095020816 sameAs 3095020816 @default.
- W3095020816 citedByCount "6" @default.
- W3095020816 countsByYear W30950208162021 @default.
- W3095020816 countsByYear W30950208162022 @default.
- W3095020816 countsByYear W30950208162023 @default.
- W3095020816 crossrefType "journal-article" @default.
- W3095020816 hasAuthorship W3095020816A5000706062 @default.
- W3095020816 hasAuthorship W3095020816A5026523515 @default.
- W3095020816 hasAuthorship W3095020816A5034581713 @default.
- W3095020816 hasAuthorship W3095020816A5036531810 @default.
- W3095020816 hasBestOaLocation W30950208161 @default.
- W3095020816 hasConcept C118552586 @default.
- W3095020816 hasConcept C139719470 @default.
- W3095020816 hasConcept C15744967 @default.
- W3095020816 hasConcept C162324750 @default.
- W3095020816 hasConcept C169900460 @default.
- W3095020816 hasConcept C2776174506 @default.
- W3095020816 hasConcept C2776412080 @default.
- W3095020816 hasConcept C2776867660 @default.
- W3095020816 hasConcept C2779727114 @default.
- W3095020816 hasConcept C2780733359 @default.
- W3095020816 hasConcept C558461103 @default.
- W3095020816 hasConcept C65499552 @default.
- W3095020816 hasConcept C70410870 @default.
- W3095020816 hasConcept C77805123 @default.
- W3095020816 hasConceptScore W3095020816C118552586 @default.
- W3095020816 hasConceptScore W3095020816C139719470 @default.
- W3095020816 hasConceptScore W3095020816C15744967 @default.
- W3095020816 hasConceptScore W3095020816C162324750 @default.
- W3095020816 hasConceptScore W3095020816C169900460 @default.
- W3095020816 hasConceptScore W3095020816C2776174506 @default.
- W3095020816 hasConceptScore W3095020816C2776412080 @default.
- W3095020816 hasConceptScore W3095020816C2776867660 @default.
- W3095020816 hasConceptScore W3095020816C2779727114 @default.
- W3095020816 hasConceptScore W3095020816C2780733359 @default.
- W3095020816 hasConceptScore W3095020816C558461103 @default.
- W3095020816 hasConceptScore W3095020816C65499552 @default.
- W3095020816 hasConceptScore W3095020816C70410870 @default.
- W3095020816 hasConceptScore W3095020816C77805123 @default.
- W3095020816 hasIssue "6" @default.
- W3095020816 hasLocation W30950208161 @default.
- W3095020816 hasLocation W30950208162 @default.