Matches in SemOpenAlex for { <https://semopenalex.org/work/W3095030217> ?p ?o ?g. }
- W3095030217 endingPage "12152" @default.
- W3095030217 startingPage "12133" @default.
- W3095030217 abstract "Abstract. In complex atmospheric emission environments such as urban agglomerates, multiple sources control the ambient chemical composition driving air quality and regional climate. In contrast to pristine sites, where reliance on single or a few chemical tracers is often adequate for resolving pollution plumes and source influences, the comprehensive chemical fingerprinting of sources using non-methane hydrocarbons (NMHCs) and the identification of suitable tracer molecules and emission ratios becomes necessary. Here, we characterise and present chemical fingerprints of some major urban and agricultural emission sources active in South Asia, such as paddy stubble burning, garbage burning, idling vehicular exhaust and evaporative fuel emissions. A total of 121 whole air samples were actively collected from the different emission sources in passivated air sampling steel canisters and then analysed for 49 NMHCs (22 alkanes, 16 aromatics, 10 alkenes and one alkyne) using thermal desorption gas chromatography flame ionisation detection. Several new insights were obtained. Propane was found to be present in paddy stubble fire emissions (8 %), and therefore, for an environment impacted by crop residue fires, the use of propane as a fugitive liquefied petroleum gas (LPG) emission tracer must be done with caution. Propene was found to be ∼ 1.6 times greater (by weight) than ethene in smouldering paddy fires. Compositional differences were observed between evaporative emissions of domestic LPG and commercial LPG, which are used in South Asia. While the domestic LPG vapours had more propane (40 ± 6 %) than n-butane (19 ± 2 %), the converse was true for commercial LPG vapours (7 ± 6 % and 37 ± 4 %, respectively). Isoprene was identified as a new tracer for distinguishing paddy stubble and garbage burning in the absence of isoprene emissions at night from biogenic sources. Analyses of source-specific inter-NMHC molar ratios revealed that toluene/benzene ratios can be used to distinguish among paddy stubble fire emissions in the flaming (0.38 ± 0.11) and smouldering stages (1.40 ± 0.10), garbage burning flaming (0.26 ± 0.07) and smouldering emissions (0.59 ± 0.16), and traffic emissions (3.54 ± 0.21), whereas i-pentane ∕ n-pentane can be used to distinguish biomass burning emissions (0.06–1.46) from the petrol-dominated traffic and fossil fuel emissions (2.83–4.13). i-butane ∕ n-butane ratios were similar (0.20–0.30) for many sources and could be used as a tracer for photochemical ageing. In agreement with previous studies, i-pentane, propane and acetylene were identified as suitable chemical tracers for petrol vehicular and evaporative emissions, LPG evaporative and vehicular emissions and flaming-stage biomass fires, respectively. The secondary pollutant formation potential and human health impact of the sources was also assessed in terms of their hydroxyl radical (OH) reactivity (s−1), ozone formation potential (OFP; gO3/gNMHC) and fractional benzene, toluene, ethylbenzene and xylenes (BTEX) content. Petrol vehicular emissions, paddy stubble fires and garbage fires were found to have a higher pollution potential (at ≥95 % confidence interval) relative to the other sources studied in this work. Thus, many results of this study provide a new foundational framework for quantitative source apportionment studies in complex emission environments." @default.
- W3095030217 created "2020-11-09" @default.
- W3095030217 creator A5003073926 @default.
- W3095030217 creator A5021625098 @default.
- W3095030217 creator A5041524880 @default.
- W3095030217 creator A5053994402 @default.
- W3095030217 creator A5078790694 @default.
- W3095030217 creator A5089171476 @default.
- W3095030217 date "2020-10-26" @default.
- W3095030217 modified "2023-10-17" @default.
- W3095030217 title "Non-methane hydrocarbon (NMHC) fingerprints of major urban and agricultural emission sources for use in source apportionment studies" @default.
- W3095030217 cites W1571330067 @default.
- W3095030217 cites W1801860109 @default.
- W3095030217 cites W1960415144 @default.
- W3095030217 cites W1960909689 @default.
- W3095030217 cites W1963701255 @default.
- W3095030217 cites W1964403366 @default.
- W3095030217 cites W1965587127 @default.
- W3095030217 cites W1972956277 @default.
- W3095030217 cites W1975294426 @default.
- W3095030217 cites W1976896340 @default.
- W3095030217 cites W1977163934 @default.
- W3095030217 cites W1977998112 @default.
- W3095030217 cites W1978932225 @default.
- W3095030217 cites W1981205119 @default.
- W3095030217 cites W1983751894 @default.
- W3095030217 cites W1995699379 @default.
- W3095030217 cites W1999094905 @default.
- W3095030217 cites W1999634906 @default.
- W3095030217 cites W2000842621 @default.
- W3095030217 cites W2004674898 @default.
- W3095030217 cites W2005192033 @default.
- W3095030217 cites W2005723817 @default.
- W3095030217 cites W2006634233 @default.
- W3095030217 cites W2009008404 @default.
- W3095030217 cites W2009011898 @default.
- W3095030217 cites W2009344803 @default.
- W3095030217 cites W2009465133 @default.
- W3095030217 cites W2009808278 @default.
- W3095030217 cites W2009837182 @default.
- W3095030217 cites W2011428576 @default.
- W3095030217 cites W2012926961 @default.
- W3095030217 cites W2013585820 @default.
- W3095030217 cites W2015996871 @default.
- W3095030217 cites W2019442711 @default.
- W3095030217 cites W2022377930 @default.
- W3095030217 cites W2023816602 @default.
- W3095030217 cites W2033803435 @default.
- W3095030217 cites W2034409970 @default.
- W3095030217 cites W2034664948 @default.
- W3095030217 cites W2044641225 @default.
- W3095030217 cites W2053102814 @default.
- W3095030217 cites W2053430419 @default.
- W3095030217 cites W2053745186 @default.
- W3095030217 cites W2071327121 @default.
- W3095030217 cites W2071804798 @default.
- W3095030217 cites W2079144617 @default.
- W3095030217 cites W2083930696 @default.
- W3095030217 cites W2089618788 @default.
- W3095030217 cites W2090827393 @default.
- W3095030217 cites W2093204787 @default.
- W3095030217 cites W2093596237 @default.
- W3095030217 cites W2098757498 @default.
- W3095030217 cites W2106007554 @default.
- W3095030217 cites W2107842672 @default.
- W3095030217 cites W2108902966 @default.
- W3095030217 cites W2111469006 @default.
- W3095030217 cites W2112095586 @default.
- W3095030217 cites W2116507044 @default.
- W3095030217 cites W2127815398 @default.
- W3095030217 cites W2135427481 @default.
- W3095030217 cites W2141668000 @default.
- W3095030217 cites W2144304061 @default.
- W3095030217 cites W2144963346 @default.
- W3095030217 cites W2155755753 @default.
- W3095030217 cites W2165258611 @default.
- W3095030217 cites W2168225205 @default.
- W3095030217 cites W2200959273 @default.
- W3095030217 cites W2227285693 @default.
- W3095030217 cites W2236859271 @default.
- W3095030217 cites W2292228812 @default.
- W3095030217 cites W2304076871 @default.
- W3095030217 cites W2503592090 @default.
- W3095030217 cites W2511835665 @default.
- W3095030217 cites W2615608826 @default.
- W3095030217 cites W2741471836 @default.
- W3095030217 cites W2776436009 @default.
- W3095030217 cites W2782839094 @default.
- W3095030217 cites W2793051614 @default.
- W3095030217 cites W2896231524 @default.
- W3095030217 cites W2912861198 @default.
- W3095030217 cites W2935360109 @default.
- W3095030217 cites W2935724762 @default.
- W3095030217 cites W2999875921 @default.
- W3095030217 doi "https://doi.org/10.5194/acp-20-12133-2020" @default.
- W3095030217 hasPublicationYear "2020" @default.
- W3095030217 type Work @default.
- W3095030217 sameAs 3095030217 @default.