Matches in SemOpenAlex for { <https://semopenalex.org/work/W3095031844> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3095031844 abstract "In this paper, we propose and study the use of noise to avoid the overfitting issue in Technology Computer-Aided Design-augmented machine learning (TCAD-ML). TCAD-ML uses TCAD to generate sufficient data to train ML models for defect detection and reverse engineering by taking electrical characteristics such as Current-Voltage, IV, and Capacitance-Voltage, CV, curves as inputs. For example, the model can be used to deduce the epitaxial thicknesses of a p-i-n diode or the ambient temperature of a Schottky diode being measured, based on a givenIV curve. The models developed by TCAD-ML usually have overfitting issues when it is applied to experimental IV curves or IV curves generated with different TCAD setup. To avoid this issue, white Gaussian noise is added to the TCAD generated curves before ML. We show that by choosing the noise level properly, overfitting can be avoided. This is demonstrated successfully by using the TCAD-ML model to predict 1) the epitaxial thicknesses of a set of TCAD silicon diode IV's generated with different settings (extra doping variations) than the settings in the training data and 2) the ambient temperature of experimental IV's of Ga <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sub> O <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>3</sub> Schottky diode. Moreover, domain expertise is not required in the ML process." @default.
- W3095031844 created "2020-11-09" @default.
- W3095031844 creator A5020048782 @default.
- W3095031844 creator A5030598751 @default.
- W3095031844 creator A5031139934 @default.
- W3095031844 creator A5037292846 @default.
- W3095031844 creator A5066974536 @default.
- W3095031844 creator A5069614092 @default.
- W3095031844 date "2020-09-23" @default.
- W3095031844 modified "2023-09-26" @default.
- W3095031844 title "Application of Noise to Avoid Overfitting in TCAD Augmented Machine Learning" @default.
- W3095031844 cites W2035492164 @default.
- W3095031844 cites W2783668429 @default.
- W3095031844 cites W2786897995 @default.
- W3095031844 cites W2891498314 @default.
- W3095031844 cites W2964573196 @default.
- W3095031844 cites W2980555067 @default.
- W3095031844 cites W2980921441 @default.
- W3095031844 cites W2997369506 @default.
- W3095031844 cites W3005062380 @default.
- W3095031844 cites W3047608619 @default.
- W3095031844 doi "https://doi.org/10.23919/sispad49475.2020.9241654" @default.
- W3095031844 hasPublicationYear "2020" @default.
- W3095031844 type Work @default.
- W3095031844 sameAs 3095031844 @default.
- W3095031844 citedByCount "11" @default.
- W3095031844 countsByYear W30950318442021 @default.
- W3095031844 countsByYear W30950318442022 @default.
- W3095031844 countsByYear W30950318442023 @default.
- W3095031844 crossrefType "proceedings-article" @default.
- W3095031844 hasAuthorship W3095031844A5020048782 @default.
- W3095031844 hasAuthorship W3095031844A5030598751 @default.
- W3095031844 hasAuthorship W3095031844A5031139934 @default.
- W3095031844 hasAuthorship W3095031844A5037292846 @default.
- W3095031844 hasAuthorship W3095031844A5066974536 @default.
- W3095031844 hasAuthorship W3095031844A5069614092 @default.
- W3095031844 hasConcept C11413529 @default.
- W3095031844 hasConcept C115961682 @default.
- W3095031844 hasConcept C119599485 @default.
- W3095031844 hasConcept C119857082 @default.
- W3095031844 hasConcept C127413603 @default.
- W3095031844 hasConcept C154945302 @default.
- W3095031844 hasConcept C184720557 @default.
- W3095031844 hasConcept C192562407 @default.
- W3095031844 hasConcept C205200001 @default.
- W3095031844 hasConcept C22019652 @default.
- W3095031844 hasConcept C24326235 @default.
- W3095031844 hasConcept C41008148 @default.
- W3095031844 hasConcept C49040817 @default.
- W3095031844 hasConcept C50644808 @default.
- W3095031844 hasConcept C78434282 @default.
- W3095031844 hasConcept C99498987 @default.
- W3095031844 hasConceptScore W3095031844C11413529 @default.
- W3095031844 hasConceptScore W3095031844C115961682 @default.
- W3095031844 hasConceptScore W3095031844C119599485 @default.
- W3095031844 hasConceptScore W3095031844C119857082 @default.
- W3095031844 hasConceptScore W3095031844C127413603 @default.
- W3095031844 hasConceptScore W3095031844C154945302 @default.
- W3095031844 hasConceptScore W3095031844C184720557 @default.
- W3095031844 hasConceptScore W3095031844C192562407 @default.
- W3095031844 hasConceptScore W3095031844C205200001 @default.
- W3095031844 hasConceptScore W3095031844C22019652 @default.
- W3095031844 hasConceptScore W3095031844C24326235 @default.
- W3095031844 hasConceptScore W3095031844C41008148 @default.
- W3095031844 hasConceptScore W3095031844C49040817 @default.
- W3095031844 hasConceptScore W3095031844C50644808 @default.
- W3095031844 hasConceptScore W3095031844C78434282 @default.
- W3095031844 hasConceptScore W3095031844C99498987 @default.
- W3095031844 hasLocation W30950318441 @default.
- W3095031844 hasOpenAccess W3095031844 @default.
- W3095031844 hasPrimaryLocation W30950318441 @default.
- W3095031844 hasRelatedWork W10453760 @default.
- W3095031844 hasRelatedWork W2624519 @default.
- W3095031844 hasRelatedWork W279880 @default.
- W3095031844 hasRelatedWork W315635 @default.
- W3095031844 hasRelatedWork W4488610 @default.
- W3095031844 hasRelatedWork W4890966 @default.
- W3095031844 hasRelatedWork W5970799 @default.
- W3095031844 hasRelatedWork W649294 @default.
- W3095031844 hasRelatedWork W7239880 @default.
- W3095031844 hasRelatedWork W9138377 @default.
- W3095031844 isParatext "false" @default.
- W3095031844 isRetracted "false" @default.
- W3095031844 magId "3095031844" @default.
- W3095031844 workType "article" @default.