Matches in SemOpenAlex for { <https://semopenalex.org/work/W3095032664> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3095032664 endingPage "120436" @default.
- W3095032664 startingPage "120436" @default.
- W3095032664 abstract "It is now an acknowledged fact that the Fourth Industrial Revolution, and the advent of other associated technologies, mainly machine learning, are drastically changing the evolutionary framework of corporate decision making. Therefore, this research studies the location decision of Chinese companies in the global network, by using novel machine learning based framework and techniques. These include the 3D vision of mode network, heat map and the hierarchical cluster analysis, with the following support of neural network, and by incorporating the internet intensity as a proxy of the Fourth Industrial Revolution. These machine learning based algorithms reaffirm the relevance of classical variables, such as financial leverage and wage level, for the expansion decisions by Chinese companies. Our results assert that financial leverage has a negative effect on the location decision of companies in the global network. However, these connotations can be mitigated through the interaction of leverage with the firm size that yields a positive effect on the location decision. Moreover, the wage level, through its interaction with financial leverage, is able to exert a negative effect on the location decision. Finally, the effect of the probability, of the involvement in different behavioral clusters on diversification of internet intensity, is further analyzed by machine learning that is based on the neural network." @default.
- W3095032664 created "2020-11-09" @default.
- W3095032664 creator A5064530845 @default.
- W3095032664 creator A5067163995 @default.
- W3095032664 date "2021-02-01" @default.
- W3095032664 modified "2023-09-27" @default.
- W3095032664 title "Using machine learning for evaluating global expansion location decisions: An analysis of Chinese manufacturing sector" @default.
- W3095032664 cites W1489484807 @default.
- W3095032664 cites W191210545 @default.
- W3095032664 cites W1980370416 @default.
- W3095032664 cites W1997000882 @default.
- W3095032664 cites W2000910214 @default.
- W3095032664 cites W2075802048 @default.
- W3095032664 cites W2076322227 @default.
- W3095032664 cites W2076423183 @default.
- W3095032664 cites W2126359443 @default.
- W3095032664 cites W2138010254 @default.
- W3095032664 cites W2154165923 @default.
- W3095032664 cites W2324891773 @default.
- W3095032664 cites W2528605693 @default.
- W3095032664 cites W2554880975 @default.
- W3095032664 cites W2611830453 @default.
- W3095032664 cites W2891971077 @default.
- W3095032664 cites W2975867066 @default.
- W3095032664 cites W3001366352 @default.
- W3095032664 cites W3003342755 @default.
- W3095032664 cites W3011744489 @default.
- W3095032664 cites W3014346580 @default.
- W3095032664 cites W3022523064 @default.
- W3095032664 cites W3088292739 @default.
- W3095032664 cites W3121177474 @default.
- W3095032664 cites W3124055564 @default.
- W3095032664 cites W4231676308 @default.
- W3095032664 cites W4238036957 @default.
- W3095032664 cites W4247586794 @default.
- W3095032664 doi "https://doi.org/10.1016/j.techfore.2020.120436" @default.
- W3095032664 hasPublicationYear "2021" @default.
- W3095032664 type Work @default.
- W3095032664 sameAs 3095032664 @default.
- W3095032664 citedByCount "10" @default.
- W3095032664 countsByYear W30950326642021 @default.
- W3095032664 countsByYear W30950326642022 @default.
- W3095032664 countsByYear W30950326642023 @default.
- W3095032664 crossrefType "journal-article" @default.
- W3095032664 hasAuthorship W3095032664A5064530845 @default.
- W3095032664 hasAuthorship W3095032664A5067163995 @default.
- W3095032664 hasConcept C110875604 @default.
- W3095032664 hasConcept C119857082 @default.
- W3095032664 hasConcept C136764020 @default.
- W3095032664 hasConcept C144133560 @default.
- W3095032664 hasConcept C153083717 @default.
- W3095032664 hasConcept C154945302 @default.
- W3095032664 hasConcept C162853370 @default.
- W3095032664 hasConcept C180916674 @default.
- W3095032664 hasConcept C2780148112 @default.
- W3095032664 hasConcept C40700 @default.
- W3095032664 hasConcept C41008148 @default.
- W3095032664 hasConcept C50644808 @default.
- W3095032664 hasConceptScore W3095032664C110875604 @default.
- W3095032664 hasConceptScore W3095032664C119857082 @default.
- W3095032664 hasConceptScore W3095032664C136764020 @default.
- W3095032664 hasConceptScore W3095032664C144133560 @default.
- W3095032664 hasConceptScore W3095032664C153083717 @default.
- W3095032664 hasConceptScore W3095032664C154945302 @default.
- W3095032664 hasConceptScore W3095032664C162853370 @default.
- W3095032664 hasConceptScore W3095032664C180916674 @default.
- W3095032664 hasConceptScore W3095032664C2780148112 @default.
- W3095032664 hasConceptScore W3095032664C40700 @default.
- W3095032664 hasConceptScore W3095032664C41008148 @default.
- W3095032664 hasConceptScore W3095032664C50644808 @default.
- W3095032664 hasLocation W30950326641 @default.
- W3095032664 hasOpenAccess W3095032664 @default.
- W3095032664 hasPrimaryLocation W30950326641 @default.
- W3095032664 hasRelatedWork W2152916951 @default.
- W3095032664 hasRelatedWork W2368066043 @default.
- W3095032664 hasRelatedWork W2726560205 @default.
- W3095032664 hasRelatedWork W2961085424 @default.
- W3095032664 hasRelatedWork W3083146596 @default.
- W3095032664 hasRelatedWork W3122974220 @default.
- W3095032664 hasRelatedWork W3125169481 @default.
- W3095032664 hasRelatedWork W4300887198 @default.
- W3095032664 hasRelatedWork W4306674287 @default.
- W3095032664 hasRelatedWork W1629725936 @default.
- W3095032664 hasVolume "163" @default.
- W3095032664 isParatext "false" @default.
- W3095032664 isRetracted "false" @default.
- W3095032664 magId "3095032664" @default.
- W3095032664 workType "article" @default.