Matches in SemOpenAlex for { <https://semopenalex.org/work/W3095080447> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W3095080447 endingPage "370" @default.
- W3095080447 startingPage "361" @default.
- W3095080447 abstract "Early diagnosis of genetic syndromes has a vital importance in the prevention of any potential related health problems. Down syndrome is the most common genetic syndrome. Patients with down syndrome have a high probability of developmental disorders, like Congenital Heart Disease, which is best treated when discovered in the early stages. These patients also have particular facial characteristics that are identified by geneticists in a physical exam. However, there is subjectivity in the professional analysis, which can lead to a late diagnosis, aggravating the patient’s health condition. This paper proposes a software framework for the automatic detection of Down syndrome using facial features extracted from digital images, which could be used as a tool to help in the early detection of genetic syndromes. For training the machine learning model, we create a dataset gathering 170 pictures of children available on the internet. 50% of the pictures were of children with Down syndrome and the other 50% of healthy children. Then, we automatically identify faces and describe the images with facial landmarks. Next, we use two approaches for feature extraction. The first is a traditional computer vision approach using selected distances and angles and textures between the landmarks. The other, a deep learning approach using a Convolutional Neural Network to extract the features automatically. Then, the feature vector is fed to a Support Vector Machine with a linear kernel on both feature extraction approaches. We validate the results measuring the accuracy, sensitivity, and specificity of both feature extraction approaches using 10-fold cross-validation. The deep learning method resulted in an accuracy of 0.94, while the traditional approach achieved 0.84 of accuracy in our dataset. The results shows that the deep learning approach has a higher classification accuracy for this task, even with a small dataset." @default.
- W3095080447 created "2020-11-09" @default.
- W3095080447 creator A5068824016 @default.
- W3095080447 creator A5070368949 @default.
- W3095080447 creator A5087411626 @default.
- W3095080447 date "2020-01-01" @default.
- W3095080447 modified "2023-10-12" @default.
- W3095080447 title "A Computational Tool for Automated Detection of Genetic Syndrome Using Facial Images" @default.
- W3095080447 cites W2002948879 @default.
- W3095080447 cites W2036731227 @default.
- W3095080447 cites W2087681821 @default.
- W3095080447 cites W2108598243 @default.
- W3095080447 cites W2112796928 @default.
- W3095080447 cites W2119584571 @default.
- W3095080447 cites W2163352848 @default.
- W3095080447 cites W2167597038 @default.
- W3095080447 cites W2284800790 @default.
- W3095080447 cites W2429856102 @default.
- W3095080447 cites W2564000158 @default.
- W3095080447 cites W2592929672 @default.
- W3095080447 cites W2761302213 @default.
- W3095080447 cites W2919115771 @default.
- W3095080447 cites W3021482956 @default.
- W3095080447 doi "https://doi.org/10.1007/978-3-030-61377-8_25" @default.
- W3095080447 hasPublicationYear "2020" @default.
- W3095080447 type Work @default.
- W3095080447 sameAs 3095080447 @default.
- W3095080447 citedByCount "0" @default.
- W3095080447 crossrefType "book-chapter" @default.
- W3095080447 hasAuthorship W3095080447A5068824016 @default.
- W3095080447 hasAuthorship W3095080447A5070368949 @default.
- W3095080447 hasAuthorship W3095080447A5087411626 @default.
- W3095080447 hasConcept C108583219 @default.
- W3095080447 hasConcept C114614502 @default.
- W3095080447 hasConcept C119857082 @default.
- W3095080447 hasConcept C12267149 @default.
- W3095080447 hasConcept C138885662 @default.
- W3095080447 hasConcept C153180895 @default.
- W3095080447 hasConcept C154945302 @default.
- W3095080447 hasConcept C2776401178 @default.
- W3095080447 hasConcept C33923547 @default.
- W3095080447 hasConcept C41008148 @default.
- W3095080447 hasConcept C41895202 @default.
- W3095080447 hasConcept C52622490 @default.
- W3095080447 hasConcept C74193536 @default.
- W3095080447 hasConcept C81363708 @default.
- W3095080447 hasConceptScore W3095080447C108583219 @default.
- W3095080447 hasConceptScore W3095080447C114614502 @default.
- W3095080447 hasConceptScore W3095080447C119857082 @default.
- W3095080447 hasConceptScore W3095080447C12267149 @default.
- W3095080447 hasConceptScore W3095080447C138885662 @default.
- W3095080447 hasConceptScore W3095080447C153180895 @default.
- W3095080447 hasConceptScore W3095080447C154945302 @default.
- W3095080447 hasConceptScore W3095080447C2776401178 @default.
- W3095080447 hasConceptScore W3095080447C33923547 @default.
- W3095080447 hasConceptScore W3095080447C41008148 @default.
- W3095080447 hasConceptScore W3095080447C41895202 @default.
- W3095080447 hasConceptScore W3095080447C52622490 @default.
- W3095080447 hasConceptScore W3095080447C74193536 @default.
- W3095080447 hasConceptScore W3095080447C81363708 @default.
- W3095080447 hasLocation W30950804471 @default.
- W3095080447 hasOpenAccess W3095080447 @default.
- W3095080447 hasPrimaryLocation W30950804471 @default.
- W3095080447 hasRelatedWork W1000462 @default.
- W3095080447 hasRelatedWork W10202958 @default.
- W3095080447 hasRelatedWork W13187899 @default.
- W3095080447 hasRelatedWork W14043209 @default.
- W3095080447 hasRelatedWork W1715589 @default.
- W3095080447 hasRelatedWork W247179 @default.
- W3095080447 hasRelatedWork W2582698 @default.
- W3095080447 hasRelatedWork W2712644 @default.
- W3095080447 hasRelatedWork W4783353 @default.
- W3095080447 hasRelatedWork W9190101 @default.
- W3095080447 isParatext "false" @default.
- W3095080447 isRetracted "false" @default.
- W3095080447 magId "3095080447" @default.
- W3095080447 workType "book-chapter" @default.