Matches in SemOpenAlex for { <https://semopenalex.org/work/W3095092225> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W3095092225 endingPage "9" @default.
- W3095092225 startingPage "1" @default.
- W3095092225 abstract "The American Cancer Society expected to diagnose 276,480 new cases of invasive breast cancer in the USA and 48,530 new cases of noninvasive breast cancer among women in 2020. Early detection of breast cancer, followed by appropriate treatment, can reduce the risk of death from this disease. DL through CNN can assist imaging specialists in classifying the mammograms accurately. Accurate classification of mammograms using CNN needs a well-trained CNN by a large number of labeled mammograms. Unfortunately, a large number of labeled mammograms are not always available. In this study, a novel procedure to aid imaging specialists in detecting normal and abnormal mammograms has been proposed. The procedure supplied the designed CNN with a cheat sheet for some classical attributes extracted from the ROI and an extra number of labeled mammograms through data augmentation. The cheat sheet aided the CNN through encoding easy-to-recognize artificial patterns in the mammogram before passing it to the CNN, and the data augmentation supported the CNN with more labeled data points. Fifteen runs of 4 different modified datasets taken from the MIAS dataset were conducted and analyzed. The results showed that the cheat sheet, along with data augmentation, enhanced CNN’s accuracy by at least 12.2% and enhanced the precision of the CNN by at least 2.2. The mean accuracy, sensitivity, and specificity obtained using the proposed procedure were 92.1, 91.4, and 96.8, respectively, while the average area under the ROC curve was 94.9." @default.
- W3095092225 created "2020-11-09" @default.
- W3095092225 creator A5081361082 @default.
- W3095092225 date "2020-10-28" @default.
- W3095092225 modified "2023-10-07" @default.
- W3095092225 title "Using Convolutional Neural Network with Cheat Sheet and Data Augmentation to Detect Breast Cancer in Mammograms" @default.
- W3095092225 cites W1654698919 @default.
- W3095092225 cites W1884191083 @default.
- W3095092225 cites W2097117768 @default.
- W3095092225 cites W2112796928 @default.
- W3095092225 cites W2126598020 @default.
- W3095092225 cites W2132424367 @default.
- W3095092225 cites W2135894269 @default.
- W3095092225 cites W2194775991 @default.
- W3095092225 cites W2253429366 @default.
- W3095092225 cites W2294712740 @default.
- W3095092225 cites W2302255633 @default.
- W3095092225 cites W2322371438 @default.
- W3095092225 cites W2341106171 @default.
- W3095092225 cites W2343172899 @default.
- W3095092225 cites W2346062110 @default.
- W3095092225 cites W2492863677 @default.
- W3095092225 cites W2527654160 @default.
- W3095092225 cites W2573215997 @default.
- W3095092225 cites W2580480204 @default.
- W3095092225 cites W2581082771 @default.
- W3095092225 cites W2618530766 @default.
- W3095092225 cites W2791915981 @default.
- W3095092225 cites W2791942584 @default.
- W3095092225 cites W2803731371 @default.
- W3095092225 cites W2884787091 @default.
- W3095092225 cites W2888567579 @default.
- W3095092225 cites W2892303956 @default.
- W3095092225 cites W2900144270 @default.
- W3095092225 cites W2917837889 @default.
- W3095092225 cites W2924232218 @default.
- W3095092225 cites W2948732750 @default.
- W3095092225 cites W2962914790 @default.
- W3095092225 cites W2965014579 @default.
- W3095092225 cites W2982822400 @default.
- W3095092225 cites W3009210879 @default.
- W3095092225 cites W3011917823 @default.
- W3095092225 cites W3017663222 @default.
- W3095092225 doi "https://doi.org/10.1155/2020/9523404" @default.
- W3095092225 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7641685" @default.
- W3095092225 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33193807" @default.
- W3095092225 hasPublicationYear "2020" @default.
- W3095092225 type Work @default.
- W3095092225 sameAs 3095092225 @default.
- W3095092225 citedByCount "15" @default.
- W3095092225 countsByYear W30950922252021 @default.
- W3095092225 countsByYear W30950922252022 @default.
- W3095092225 countsByYear W30950922252023 @default.
- W3095092225 crossrefType "journal-article" @default.
- W3095092225 hasAuthorship W3095092225A5081361082 @default.
- W3095092225 hasBestOaLocation W30950922251 @default.
- W3095092225 hasConcept C108583219 @default.
- W3095092225 hasConcept C121608353 @default.
- W3095092225 hasConcept C126322002 @default.
- W3095092225 hasConcept C153180895 @default.
- W3095092225 hasConcept C154945302 @default.
- W3095092225 hasConcept C2780472235 @default.
- W3095092225 hasConcept C41008148 @default.
- W3095092225 hasConcept C530470458 @default.
- W3095092225 hasConcept C71924100 @default.
- W3095092225 hasConcept C81363708 @default.
- W3095092225 hasConceptScore W3095092225C108583219 @default.
- W3095092225 hasConceptScore W3095092225C121608353 @default.
- W3095092225 hasConceptScore W3095092225C126322002 @default.
- W3095092225 hasConceptScore W3095092225C153180895 @default.
- W3095092225 hasConceptScore W3095092225C154945302 @default.
- W3095092225 hasConceptScore W3095092225C2780472235 @default.
- W3095092225 hasConceptScore W3095092225C41008148 @default.
- W3095092225 hasConceptScore W3095092225C530470458 @default.
- W3095092225 hasConceptScore W3095092225C71924100 @default.
- W3095092225 hasConceptScore W3095092225C81363708 @default.
- W3095092225 hasFunder F4320321899 @default.
- W3095092225 hasLocation W30950922251 @default.
- W3095092225 hasLocation W30950922252 @default.
- W3095092225 hasOpenAccess W3095092225 @default.
- W3095092225 hasPrimaryLocation W30950922251 @default.
- W3095092225 hasRelatedWork W2731899572 @default.
- W3095092225 hasRelatedWork W2999805992 @default.
- W3095092225 hasRelatedWork W3011074480 @default.
- W3095092225 hasRelatedWork W3116150086 @default.
- W3095092225 hasRelatedWork W3133861977 @default.
- W3095092225 hasRelatedWork W3192840557 @default.
- W3095092225 hasRelatedWork W4200173597 @default.
- W3095092225 hasRelatedWork W4291897433 @default.
- W3095092225 hasRelatedWork W4312417841 @default.
- W3095092225 hasRelatedWork W4321369474 @default.
- W3095092225 hasVolume "2020" @default.
- W3095092225 isParatext "false" @default.
- W3095092225 isRetracted "false" @default.
- W3095092225 magId "3095092225" @default.
- W3095092225 workType "article" @default.