Matches in SemOpenAlex for { <https://semopenalex.org/work/W3095155556> ?p ?o ?g. }
- W3095155556 endingPage "6290" @default.
- W3095155556 startingPage "6277" @default.
- W3095155556 abstract "Pansharpening is a very debated spatio-spectral fusion problem. It refers to the fusion of a high spatial resolution panchromatic image with a lower spatial but higher spectral resolution multispectral image in order to obtain an image with high resolution in both the domains. In this article, we propose a novel variational optimization-based (VO) approach to address this issue incorporating the outcome of a deep convolutional neural network (DCNN). This solution can take advantages of both the paradigms. On one hand, higher performance can be expected introducing machine learning (ML) methods based on the training by examples philosophy into VO approaches. On other hand, the combination of VO techniques with DCNNs can aid the generalization ability of these latter. In particular, we formulate a $ell _2$-based proximal deep injection term to evaluate the distance between the DCNN outcome, and the desired high spatial resolution multispectral image. This represents the regularization term for our VO model. Furthermore, a new data fitting term measuring the spatial fidelity is proposed. Finally, the proposed convex VO problem is efficiently solved by exploiting the framework of the alternating direction method of multipliers (ADMM), thus guaranteeing the convergence of the algorithm. Extensive experiments both on simulated, and real datasets demonstrate that the proposed approach can outperform state-of-the-art spatio-spectral fusion methods, even showing a significant generalization ability. Please find the project page at https://liangjiandeng.github.io/Projects_Res/DMPIF_2020jstars.html." @default.
- W3095155556 created "2020-11-09" @default.
- W3095155556 creator A5011715660 @default.
- W3095155556 creator A5032964134 @default.
- W3095155556 creator A5043777501 @default.
- W3095155556 creator A5050251254 @default.
- W3095155556 creator A5065782725 @default.
- W3095155556 creator A5088224232 @default.
- W3095155556 creator A5088673166 @default.
- W3095155556 date "2020-01-01" @default.
- W3095155556 modified "2023-10-14" @default.
- W3095155556 title "A New Variational Approach Based on Proximal Deep Injection and Gradient Intensity Similarity for Spatio-Spectral Image Fusion" @default.
- W3095155556 cites W1943127271 @default.
- W3095155556 cites W1978333359 @default.
- W3095155556 cites W1980110630 @default.
- W3095155556 cites W2000323021 @default.
- W3095155556 cites W2001800591 @default.
- W3095155556 cites W2004913087 @default.
- W3095155556 cites W2014823423 @default.
- W3095155556 cites W2021046129 @default.
- W3095155556 cites W2024165284 @default.
- W3095155556 cites W2064366277 @default.
- W3095155556 cites W2086600055 @default.
- W3095155556 cites W2100329651 @default.
- W3095155556 cites W2100556411 @default.
- W3095155556 cites W2120053475 @default.
- W3095155556 cites W2123046940 @default.
- W3095155556 cites W2124743705 @default.
- W3095155556 cites W2133665775 @default.
- W3095155556 cites W2139529730 @default.
- W3095155556 cites W2142224912 @default.
- W3095155556 cites W2154789478 @default.
- W3095155556 cites W2163334907 @default.
- W3095155556 cites W2171211028 @default.
- W3095155556 cites W2172185514 @default.
- W3095155556 cites W2198968434 @default.
- W3095155556 cites W2327302159 @default.
- W3095155556 cites W2462592242 @default.
- W3095155556 cites W2514340250 @default.
- W3095155556 cites W2527114552 @default.
- W3095155556 cites W2613155248 @default.
- W3095155556 cites W2619662254 @default.
- W3095155556 cites W2775207294 @default.
- W3095155556 cites W2777033955 @default.
- W3095155556 cites W2792111852 @default.
- W3095155556 cites W2792142731 @default.
- W3095155556 cites W2803614623 @default.
- W3095155556 cites W2806865914 @default.
- W3095155556 cites W2826818064 @default.
- W3095155556 cites W2883401594 @default.
- W3095155556 cites W2906771061 @default.
- W3095155556 cites W2910457605 @default.
- W3095155556 cites W2911017737 @default.
- W3095155556 cites W2945202593 @default.
- W3095155556 cites W2947324203 @default.
- W3095155556 cites W2948437909 @default.
- W3095155556 cites W2948669395 @default.
- W3095155556 cites W2953478519 @default.
- W3095155556 cites W2953843381 @default.
- W3095155556 cites W2957651636 @default.
- W3095155556 cites W2963007295 @default.
- W3095155556 cites W2963129413 @default.
- W3095155556 cites W2975433406 @default.
- W3095155556 cites W2983915355 @default.
- W3095155556 cites W2990162903 @default.
- W3095155556 cites W3014967571 @default.
- W3095155556 cites W3016410830 @default.
- W3095155556 cites W3045851210 @default.
- W3095155556 cites W3099843321 @default.
- W3095155556 cites W3102253068 @default.
- W3095155556 cites W4292363360 @default.
- W3095155556 doi "https://doi.org/10.1109/jstars.2020.3030129" @default.
- W3095155556 hasPublicationYear "2020" @default.
- W3095155556 type Work @default.
- W3095155556 sameAs 3095155556 @default.
- W3095155556 citedByCount "21" @default.
- W3095155556 countsByYear W30951555562021 @default.
- W3095155556 countsByYear W30951555562022 @default.
- W3095155556 countsByYear W30951555562023 @default.
- W3095155556 crossrefType "journal-article" @default.
- W3095155556 hasAuthorship W3095155556A5011715660 @default.
- W3095155556 hasAuthorship W3095155556A5032964134 @default.
- W3095155556 hasAuthorship W3095155556A5043777501 @default.
- W3095155556 hasAuthorship W3095155556A5050251254 @default.
- W3095155556 hasAuthorship W3095155556A5065782725 @default.
- W3095155556 hasAuthorship W3095155556A5088224232 @default.
- W3095155556 hasAuthorship W3095155556A5088673166 @default.
- W3095155556 hasBestOaLocation W30951555561 @default.
- W3095155556 hasConcept C107445234 @default.
- W3095155556 hasConcept C11413529 @default.
- W3095155556 hasConcept C115961682 @default.
- W3095155556 hasConcept C121332964 @default.
- W3095155556 hasConcept C134306372 @default.
- W3095155556 hasConcept C153180895 @default.
- W3095155556 hasConcept C154945302 @default.
- W3095155556 hasConcept C162324750 @default.
- W3095155556 hasConcept C173163844 @default.
- W3095155556 hasConcept C177148314 @default.