Matches in SemOpenAlex for { <https://semopenalex.org/work/W3095325497> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W3095325497 abstract "In this paper 16 different Moodle Machine Learning models for predicting the success of 57 full-time students enrolled in the Applied Statistics course at the University of Dunaújváros in Hungary have been developed and tested in terms of “goodness”. The success can be affected by several factors, but here only students' cognitive activities are examined. The predictors used in the models are based on: number of view of PDF lecture notes, number of views of video lectures, number of views of books of solved exercises, number of views of Minitab videos (videos for problem solving with a statistical software), number of attempts of quizzes and best grades achieved by students on quizzes. The models differed in the number and in the types of predictors. Binary Logistic Regression was used for model training and evaluation. The target of the models indicates whether a student is at risk of not achieving the minimum grade to pass the course. The impact of cognitive predictors that are part of the Moodle core Analytics API on predictive power was also examined. Having evaluated the goodness of the different models, it was shown that students' success can be predicted purely from cognitive activities, but their predictive powers are very diverse. The predictors of quizzes have the largest impact on the success, however, supplementing the model with other even less effective predictors much better model can be made. Models built from purely Moodle core cognitive predictors give much less reliable results." @default.
- W3095325497 created "2020-11-09" @default.
- W3095325497 creator A5001396224 @default.
- W3095325497 creator A5049610809 @default.
- W3095325497 date "2020-09-23" @default.
- W3095325497 modified "2023-10-17" @default.
- W3095325497 title "Different learning predictors and their effects for Moodle Machine Learning models" @default.
- W3095325497 cites W2014858765 @default.
- W3095325497 cites W2038749650 @default.
- W3095325497 cites W2041304617 @default.
- W3095325497 cites W2187833185 @default.
- W3095325497 cites W2612059685 @default.
- W3095325497 cites W2903950532 @default.
- W3095325497 cites W2912695767 @default.
- W3095325497 cites W2955452307 @default.
- W3095325497 cites W2999309192 @default.
- W3095325497 cites W3005270051 @default.
- W3095325497 cites W3024351545 @default.
- W3095325497 cites W3024940756 @default.
- W3095325497 cites W4367028911 @default.
- W3095325497 doi "https://doi.org/10.1109/coginfocom50765.2020.9237894" @default.
- W3095325497 hasPublicationYear "2020" @default.
- W3095325497 type Work @default.
- W3095325497 sameAs 3095325497 @default.
- W3095325497 citedByCount "3" @default.
- W3095325497 countsByYear W30953254972021 @default.
- W3095325497 countsByYear W30953254972022 @default.
- W3095325497 crossrefType "proceedings-article" @default.
- W3095325497 hasAuthorship W3095325497A5001396224 @default.
- W3095325497 hasAuthorship W3095325497A5049610809 @default.
- W3095325497 hasConcept C111472728 @default.
- W3095325497 hasConcept C119857082 @default.
- W3095325497 hasConcept C132480984 @default.
- W3095325497 hasConcept C138885662 @default.
- W3095325497 hasConcept C145420912 @default.
- W3095325497 hasConcept C151956035 @default.
- W3095325497 hasConcept C152877465 @default.
- W3095325497 hasConcept C154945302 @default.
- W3095325497 hasConcept C15744967 @default.
- W3095325497 hasConcept C169760540 @default.
- W3095325497 hasConcept C169900460 @default.
- W3095325497 hasConcept C2777648619 @default.
- W3095325497 hasConcept C2778136018 @default.
- W3095325497 hasConcept C41008148 @default.
- W3095325497 hasConcept C45804977 @default.
- W3095325497 hasConcept C83209312 @default.
- W3095325497 hasConceptScore W3095325497C111472728 @default.
- W3095325497 hasConceptScore W3095325497C119857082 @default.
- W3095325497 hasConceptScore W3095325497C132480984 @default.
- W3095325497 hasConceptScore W3095325497C138885662 @default.
- W3095325497 hasConceptScore W3095325497C145420912 @default.
- W3095325497 hasConceptScore W3095325497C151956035 @default.
- W3095325497 hasConceptScore W3095325497C152877465 @default.
- W3095325497 hasConceptScore W3095325497C154945302 @default.
- W3095325497 hasConceptScore W3095325497C15744967 @default.
- W3095325497 hasConceptScore W3095325497C169760540 @default.
- W3095325497 hasConceptScore W3095325497C169900460 @default.
- W3095325497 hasConceptScore W3095325497C2777648619 @default.
- W3095325497 hasConceptScore W3095325497C2778136018 @default.
- W3095325497 hasConceptScore W3095325497C41008148 @default.
- W3095325497 hasConceptScore W3095325497C45804977 @default.
- W3095325497 hasConceptScore W3095325497C83209312 @default.
- W3095325497 hasLocation W30953254971 @default.
- W3095325497 hasOpenAccess W3095325497 @default.
- W3095325497 hasPrimaryLocation W30953254971 @default.
- W3095325497 hasRelatedWork W2582287177 @default.
- W3095325497 hasRelatedWork W2809858895 @default.
- W3095325497 hasRelatedWork W3047847637 @default.
- W3095325497 hasRelatedWork W3123613287 @default.
- W3095325497 hasRelatedWork W3189884647 @default.
- W3095325497 hasRelatedWork W3199841521 @default.
- W3095325497 hasRelatedWork W4285505876 @default.
- W3095325497 hasRelatedWork W4311802502 @default.
- W3095325497 hasRelatedWork W4321234707 @default.
- W3095325497 hasRelatedWork W4385950391 @default.
- W3095325497 isParatext "false" @default.
- W3095325497 isRetracted "false" @default.
- W3095325497 magId "3095325497" @default.
- W3095325497 workType "article" @default.