Matches in SemOpenAlex for { <https://semopenalex.org/work/W3095367057> ?p ?o ?g. }
- W3095367057 endingPage "60" @default.
- W3095367057 startingPage "45" @default.
- W3095367057 abstract "Unbiased learning to rank aims to generate optimal orders for candidates utilizing noisy click-through data. To deal with such problem, most models treat the biased click labels as combined supervision of relevance and propensity, which pay little attention to the uncertainty of implicit user feedback. We propose a semi-supervised framework to address this issue, namely ULTRGAN (Unbiased Learning To Rank with Generative Adversarial Networks). The unified framework regards the task as semi-supervised learning with missing labels, and employs adversarial training to debias click-through datasets. In ULTRGAN, the generator samples potential negative examples combined with true positive examples for the discriminator. Meanwhile, the discriminator challenges the generator for better performances. We further incorporate pairwise debiasing to generate unbiased labels diffusing from the discriminator to the generator. Experimental results over both synthetic and real-world datasets show the effectiveness and robustness of ULTRGAN." @default.
- W3095367057 created "2020-11-09" @default.
- W3095367057 creator A5001799694 @default.
- W3095367057 creator A5005503474 @default.
- W3095367057 creator A5034474990 @default.
- W3095367057 date "2020-01-01" @default.
- W3095367057 modified "2023-10-14" @default.
- W3095367057 title "Debiasing Learning to Rank Models with Generative Adversarial Networks" @default.
- W3095367057 cites W1708221419 @default.
- W3095367057 cites W1992549066 @default.
- W3095367057 cites W1992665562 @default.
- W3095367057 cites W2009979684 @default.
- W3095367057 cites W2026784708 @default.
- W3095367057 cites W2047221353 @default.
- W3095367057 cites W2090883204 @default.
- W3095367057 cites W2108862644 @default.
- W3095367057 cites W2136542423 @default.
- W3095367057 cites W2143331230 @default.
- W3095367057 cites W2149427297 @default.
- W3095367057 cites W2150291618 @default.
- W3095367057 cites W2155587858 @default.
- W3095367057 cites W2339829457 @default.
- W3095367057 cites W2340526403 @default.
- W3095367057 cites W2507134384 @default.
- W3095367057 cites W2769473018 @default.
- W3095367057 cites W2797400361 @default.
- W3095367057 cites W2891508226 @default.
- W3095367057 cites W2892888989 @default.
- W3095367057 cites W2912255075 @default.
- W3095367057 cites W2955887579 @default.
- W3095367057 cites W2986273318 @default.
- W3095367057 cites W2997842202 @default.
- W3095367057 cites W3021683593 @default.
- W3095367057 cites W3101023724 @default.
- W3095367057 cites W3101215053 @default.
- W3095367057 cites W3105997200 @default.
- W3095367057 doi "https://doi.org/10.1007/978-3-030-60290-1_4" @default.
- W3095367057 hasPublicationYear "2020" @default.
- W3095367057 type Work @default.
- W3095367057 sameAs 3095367057 @default.
- W3095367057 citedByCount "1" @default.
- W3095367057 countsByYear W30953670572022 @default.
- W3095367057 crossrefType "book-chapter" @default.
- W3095367057 hasAuthorship W3095367057A5001799694 @default.
- W3095367057 hasAuthorship W3095367057A5005503474 @default.
- W3095367057 hasAuthorship W3095367057A5034474990 @default.
- W3095367057 hasConcept C104317684 @default.
- W3095367057 hasConcept C114614502 @default.
- W3095367057 hasConcept C119857082 @default.
- W3095367057 hasConcept C121332964 @default.
- W3095367057 hasConcept C154945302 @default.
- W3095367057 hasConcept C15744967 @default.
- W3095367057 hasConcept C158154518 @default.
- W3095367057 hasConcept C163258240 @default.
- W3095367057 hasConcept C164226766 @default.
- W3095367057 hasConcept C17744445 @default.
- W3095367057 hasConcept C184898388 @default.
- W3095367057 hasConcept C185592680 @default.
- W3095367057 hasConcept C188147891 @default.
- W3095367057 hasConcept C189430467 @default.
- W3095367057 hasConcept C199539241 @default.
- W3095367057 hasConcept C2779458634 @default.
- W3095367057 hasConcept C2779803651 @default.
- W3095367057 hasConcept C2780992000 @default.
- W3095367057 hasConcept C33923547 @default.
- W3095367057 hasConcept C37736160 @default.
- W3095367057 hasConcept C39890363 @default.
- W3095367057 hasConcept C41008148 @default.
- W3095367057 hasConcept C55493867 @default.
- W3095367057 hasConcept C62520636 @default.
- W3095367057 hasConcept C63479239 @default.
- W3095367057 hasConcept C76155785 @default.
- W3095367057 hasConcept C86037889 @default.
- W3095367057 hasConcept C94915269 @default.
- W3095367057 hasConceptScore W3095367057C104317684 @default.
- W3095367057 hasConceptScore W3095367057C114614502 @default.
- W3095367057 hasConceptScore W3095367057C119857082 @default.
- W3095367057 hasConceptScore W3095367057C121332964 @default.
- W3095367057 hasConceptScore W3095367057C154945302 @default.
- W3095367057 hasConceptScore W3095367057C15744967 @default.
- W3095367057 hasConceptScore W3095367057C158154518 @default.
- W3095367057 hasConceptScore W3095367057C163258240 @default.
- W3095367057 hasConceptScore W3095367057C164226766 @default.
- W3095367057 hasConceptScore W3095367057C17744445 @default.
- W3095367057 hasConceptScore W3095367057C184898388 @default.
- W3095367057 hasConceptScore W3095367057C185592680 @default.
- W3095367057 hasConceptScore W3095367057C188147891 @default.
- W3095367057 hasConceptScore W3095367057C189430467 @default.
- W3095367057 hasConceptScore W3095367057C199539241 @default.
- W3095367057 hasConceptScore W3095367057C2779458634 @default.
- W3095367057 hasConceptScore W3095367057C2779803651 @default.
- W3095367057 hasConceptScore W3095367057C2780992000 @default.
- W3095367057 hasConceptScore W3095367057C33923547 @default.
- W3095367057 hasConceptScore W3095367057C37736160 @default.
- W3095367057 hasConceptScore W3095367057C39890363 @default.
- W3095367057 hasConceptScore W3095367057C41008148 @default.
- W3095367057 hasConceptScore W3095367057C55493867 @default.
- W3095367057 hasConceptScore W3095367057C62520636 @default.