Matches in SemOpenAlex for { <https://semopenalex.org/work/W3095404732> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W3095404732 endingPage "95" @default.
- W3095404732 startingPage "95" @default.
- W3095404732 abstract "This paper describes the process and outcome of deterioration modeling for three different pavement types (asphalt, concrete, and composite) in the state of Iowa. Pavement condition data is collected by the Iowa Department of Transportation (DOT) and stored in a Pavement-Management Information System (PMIS). In the state of Iowa, the overall pavement condition is quantified using the Pavement Condition Index (PCI), which is a weighted average of indices representing different types of distress, roughness, and deflection. Deterioration models of PCI as a function of time were developed for the different pavement types using two modeling approaches. The first approach is the long/short-term memory (LSTM), a subset of a recurrent neural network. The second approach, used by the Iowa DOT, is developing individual regression models for each section of the different pavement types. A comparison is made between the two approaches to assess the accuracy of each model. The results show that the LSTM model achieved a higher prediction accuracy over time for all different pavement types." @default.
- W3095404732 created "2020-11-09" @default.
- W3095404732 creator A5018956273 @default.
- W3095404732 creator A5060584558 @default.
- W3095404732 creator A5060907341 @default.
- W3095404732 date "2020-11-05" @default.
- W3095404732 modified "2023-10-10" @default.
- W3095404732 title "Use of Deep Learning to Study Modeling Deterioration of Pavements a Case Study in Iowa" @default.
- W3095404732 cites W1994556116 @default.
- W3095404732 cites W2009347864 @default.
- W3095404732 cites W2027714770 @default.
- W3095404732 cites W2028070629 @default.
- W3095404732 cites W2046001255 @default.
- W3095404732 cites W2064820716 @default.
- W3095404732 cites W2081652640 @default.
- W3095404732 cites W2087278605 @default.
- W3095404732 cites W2109563136 @default.
- W3095404732 cites W2112653053 @default.
- W3095404732 cites W2128628015 @default.
- W3095404732 cites W2150945341 @default.
- W3095404732 cites W2158421771 @default.
- W3095404732 cites W2161999555 @default.
- W3095404732 cites W2165456507 @default.
- W3095404732 cites W2769406201 @default.
- W3095404732 cites W2893713665 @default.
- W3095404732 cites W2919115771 @default.
- W3095404732 cites W2966014952 @default.
- W3095404732 cites W381538111 @default.
- W3095404732 cites W4230306909 @default.
- W3095404732 cites W4230844100 @default.
- W3095404732 doi "https://doi.org/10.3390/infrastructures5110095" @default.
- W3095404732 hasPublicationYear "2020" @default.
- W3095404732 type Work @default.
- W3095404732 sameAs 3095404732 @default.
- W3095404732 citedByCount "17" @default.
- W3095404732 countsByYear W30954047322021 @default.
- W3095404732 countsByYear W30954047322022 @default.
- W3095404732 countsByYear W30954047322023 @default.
- W3095404732 crossrefType "journal-article" @default.
- W3095404732 hasAuthorship W3095404732A5018956273 @default.
- W3095404732 hasAuthorship W3095404732A5060584558 @default.
- W3095404732 hasAuthorship W3095404732A5060907341 @default.
- W3095404732 hasBestOaLocation W30954047321 @default.
- W3095404732 hasConcept C119857082 @default.
- W3095404732 hasConcept C120665830 @default.
- W3095404732 hasConcept C121332964 @default.
- W3095404732 hasConcept C127413603 @default.
- W3095404732 hasConcept C147176958 @default.
- W3095404732 hasConcept C168056786 @default.
- W3095404732 hasConcept C205649164 @default.
- W3095404732 hasConcept C2780996376 @default.
- W3095404732 hasConcept C2781212230 @default.
- W3095404732 hasConcept C2781355719 @default.
- W3095404732 hasConcept C2986189917 @default.
- W3095404732 hasConcept C40084718 @default.
- W3095404732 hasConcept C41008148 @default.
- W3095404732 hasConcept C50644808 @default.
- W3095404732 hasConcept C58640448 @default.
- W3095404732 hasConcept C71039073 @default.
- W3095404732 hasConcept C78519656 @default.
- W3095404732 hasConceptScore W3095404732C119857082 @default.
- W3095404732 hasConceptScore W3095404732C120665830 @default.
- W3095404732 hasConceptScore W3095404732C121332964 @default.
- W3095404732 hasConceptScore W3095404732C127413603 @default.
- W3095404732 hasConceptScore W3095404732C147176958 @default.
- W3095404732 hasConceptScore W3095404732C168056786 @default.
- W3095404732 hasConceptScore W3095404732C205649164 @default.
- W3095404732 hasConceptScore W3095404732C2780996376 @default.
- W3095404732 hasConceptScore W3095404732C2781212230 @default.
- W3095404732 hasConceptScore W3095404732C2781355719 @default.
- W3095404732 hasConceptScore W3095404732C2986189917 @default.
- W3095404732 hasConceptScore W3095404732C40084718 @default.
- W3095404732 hasConceptScore W3095404732C41008148 @default.
- W3095404732 hasConceptScore W3095404732C50644808 @default.
- W3095404732 hasConceptScore W3095404732C58640448 @default.
- W3095404732 hasConceptScore W3095404732C71039073 @default.
- W3095404732 hasConceptScore W3095404732C78519656 @default.
- W3095404732 hasIssue "11" @default.
- W3095404732 hasLocation W30954047321 @default.
- W3095404732 hasLocation W30954047322 @default.
- W3095404732 hasOpenAccess W3095404732 @default.
- W3095404732 hasPrimaryLocation W30954047321 @default.
- W3095404732 hasRelatedWork W2005484995 @default.
- W3095404732 hasRelatedWork W2053979927 @default.
- W3095404732 hasRelatedWork W2090346518 @default.
- W3095404732 hasRelatedWork W2391817227 @default.
- W3095404732 hasRelatedWork W3012064786 @default.
- W3095404732 hasRelatedWork W4225149737 @default.
- W3095404732 hasRelatedWork W573080288 @default.
- W3095404732 hasRelatedWork W607786628 @default.
- W3095404732 hasRelatedWork W612954949 @default.
- W3095404732 hasRelatedWork W749230480 @default.
- W3095404732 hasVolume "5" @default.
- W3095404732 isParatext "false" @default.
- W3095404732 isRetracted "false" @default.
- W3095404732 magId "3095404732" @default.
- W3095404732 workType "article" @default.