Matches in SemOpenAlex for { <https://semopenalex.org/work/W3095417967> ?p ?o ?g. }
- W3095417967 endingPage "1647" @default.
- W3095417967 startingPage "1634" @default.
- W3095417967 abstract "The present waste-management system in most developing countries are insufficient to combat the challenge of increasing rate of solid waste generation. Accurate prediction of waste generated through modelling approach will help to overcome the challenge of deficient-planning of sustainable waste-management. In modelling the complexity within a system, a paradigm-shift from classical-model to artificial intelligent model has been necessitated. Previous researches which used Adaptive Neuro-Fuzzy Inference System (ANFIS) for waste generation forecast did not investigate the effect of clustering-techniques and parameters on the performance of the model despite its significance in achieving accurate prediction. This study therefore investigates the impact of the parameters of three clustering-technique namely: Fuzzy c-means (FCM), Grid-Partitioning (GP) and Subtractive-Clustering (SC) on the performance of the ANFIS model in predicting waste generation using South Africa as a case study. Socio-economic and demographic provincial-data for the period 2008-2016 were used as input-variables and provincial waste quantities as output-variable. ANFIS model clustered with GP using triangular input membership-function (tri-MF) and a linear type output membership-function (ANFIS-GP1) is the optimal model with Mean Absolute Percentage Error (MAPE), Mean Absolute Deviation (MAD), Root Mean Square Error (RMSE) and Correlation Co-efficient (R2) values of 12.6727, 0.6940, 1.2372 and 0.9392 respectively. Based on the result in this study, ANFIS-GP with a triangular membership-function is recommended for modelling waste generation. The tool presented in this study can be utilized for the national repository of waste generation data by the South Africa Waste Information Centre (SAWIC) in South Africa and in other developing countries." @default.
- W3095417967 created "2020-11-09" @default.
- W3095417967 creator A5007199173 @default.
- W3095417967 creator A5035003728 @default.
- W3095417967 creator A5077506090 @default.
- W3095417967 creator A5091333482 @default.
- W3095417967 date "2020-11-27" @default.
- W3095417967 modified "2023-10-01" @default.
- W3095417967 title "Prediction of municipal solid waste generation: an investigation of the effect of clustering techniques and parameters on ANFIS model performance" @default.
- W3095417967 cites W1909823165 @default.
- W3095417967 cites W1967502173 @default.
- W3095417967 cites W1969002952 @default.
- W3095417967 cites W1973548292 @default.
- W3095417967 cites W2003180829 @default.
- W3095417967 cites W2019207321 @default.
- W3095417967 cites W2029545326 @default.
- W3095417967 cites W2042079766 @default.
- W3095417967 cites W2046347778 @default.
- W3095417967 cites W2056694556 @default.
- W3095417967 cites W2066144045 @default.
- W3095417967 cites W2069308073 @default.
- W3095417967 cites W2079790476 @default.
- W3095417967 cites W2080235268 @default.
- W3095417967 cites W2085308176 @default.
- W3095417967 cites W2088758237 @default.
- W3095417967 cites W2093619595 @default.
- W3095417967 cites W2110213368 @default.
- W3095417967 cites W2110983336 @default.
- W3095417967 cites W2113843712 @default.
- W3095417967 cites W2126593268 @default.
- W3095417967 cites W2167205116 @default.
- W3095417967 cites W2219656907 @default.
- W3095417967 cites W2324898101 @default.
- W3095417967 cites W2344568978 @default.
- W3095417967 cites W2404304670 @default.
- W3095417967 cites W2412393926 @default.
- W3095417967 cites W2499563945 @default.
- W3095417967 cites W2529019962 @default.
- W3095417967 cites W2592535989 @default.
- W3095417967 cites W2740722926 @default.
- W3095417967 cites W2763819458 @default.
- W3095417967 cites W2770391349 @default.
- W3095417967 cites W2774603473 @default.
- W3095417967 cites W2775114751 @default.
- W3095417967 cites W2793811325 @default.
- W3095417967 cites W2800142469 @default.
- W3095417967 cites W2804521197 @default.
- W3095417967 cites W2887695198 @default.
- W3095417967 cites W2902557543 @default.
- W3095417967 cites W2914010233 @default.
- W3095417967 cites W2917171524 @default.
- W3095417967 cites W2997787163 @default.
- W3095417967 cites W3000279472 @default.
- W3095417967 cites W3044183102 @default.
- W3095417967 doi "https://doi.org/10.1080/09593330.2020.1845819" @default.
- W3095417967 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33143558" @default.
- W3095417967 hasPublicationYear "2020" @default.
- W3095417967 type Work @default.
- W3095417967 sameAs 3095417967 @default.
- W3095417967 citedByCount "19" @default.
- W3095417967 countsByYear W30954179672021 @default.
- W3095417967 countsByYear W30954179672022 @default.
- W3095417967 countsByYear W30954179672023 @default.
- W3095417967 crossrefType "journal-article" @default.
- W3095417967 hasAuthorship W3095417967A5007199173 @default.
- W3095417967 hasAuthorship W3095417967A5035003728 @default.
- W3095417967 hasAuthorship W3095417967A5077506090 @default.
- W3095417967 hasAuthorship W3095417967A5091333482 @default.
- W3095417967 hasConcept C105795698 @default.
- W3095417967 hasConcept C124101348 @default.
- W3095417967 hasConcept C127413603 @default.
- W3095417967 hasConcept C139945424 @default.
- W3095417967 hasConcept C150217764 @default.
- W3095417967 hasConcept C154945302 @default.
- W3095417967 hasConcept C186108316 @default.
- W3095417967 hasConcept C195975749 @default.
- W3095417967 hasConcept C33923547 @default.
- W3095417967 hasConcept C41008148 @default.
- W3095417967 hasConcept C548081761 @default.
- W3095417967 hasConcept C58166 @default.
- W3095417967 hasConcept C73555534 @default.
- W3095417967 hasConcept C75779659 @default.
- W3095417967 hasConceptScore W3095417967C105795698 @default.
- W3095417967 hasConceptScore W3095417967C124101348 @default.
- W3095417967 hasConceptScore W3095417967C127413603 @default.
- W3095417967 hasConceptScore W3095417967C139945424 @default.
- W3095417967 hasConceptScore W3095417967C150217764 @default.
- W3095417967 hasConceptScore W3095417967C154945302 @default.
- W3095417967 hasConceptScore W3095417967C186108316 @default.
- W3095417967 hasConceptScore W3095417967C195975749 @default.
- W3095417967 hasConceptScore W3095417967C33923547 @default.
- W3095417967 hasConceptScore W3095417967C41008148 @default.
- W3095417967 hasConceptScore W3095417967C548081761 @default.
- W3095417967 hasConceptScore W3095417967C58166 @default.
- W3095417967 hasConceptScore W3095417967C73555534 @default.
- W3095417967 hasConceptScore W3095417967C75779659 @default.
- W3095417967 hasIssue "11" @default.
- W3095417967 hasLocation W30954179671 @default.