Matches in SemOpenAlex for { <https://semopenalex.org/work/W3095488976> ?p ?o ?g. }
- W3095488976 endingPage "115" @default.
- W3095488976 startingPage "95" @default.
- W3095488976 abstract "Nowadays, machine learning algorithms are trendy and are used to solve different problems of autonomous vehicles obtaining good results. Among these algorithms, deep learning has emerged as an excellent alternative to improve the results of the state-of-the-art in machine vision applications. An essential task in autonomous vehicles is the detection of traffic signs. Some metrics used for these detectors focus on assessing precision and recall. However, it is necessary to consider other factors, such as the implementation of these models on an embedded system. In this work, we implement deep learning algorithms on an embedded system to evaluate two different detection algorithms: Faster R-CNN and Single Shot Multibox Detector (SSD) with two feature extractors, ResNet V1 101 and MobileNet V1 to determine the location of traffic signs within the observed scenario. The contribution of this work focuses on evaluating the implementation of traffic sign detection systems based on deep learning algorithms on embedded systems. The experiments were achieved on the experimental embedded system board Nvidia Jetson Nano. The inference time and memory consumption of these detection systems were evaluated; they delivered good performance (81–98%) measure by average precision for each superclass (prohibitory, warning, and mandatory)." @default.
- W3095488976 created "2020-11-09" @default.
- W3095488976 creator A5027537629 @default.
- W3095488976 creator A5031143671 @default.
- W3095488976 creator A5032289111 @default.
- W3095488976 creator A5033991197 @default.
- W3095488976 creator A5065191681 @default.
- W3095488976 date "2020-11-07" @default.
- W3095488976 modified "2023-10-17" @default.
- W3095488976 title "Evaluation of Deep Learning Algorithms for Traffic Sign Detection to Implement on Embedded Systems" @default.
- W3095488976 cites W1536680647 @default.
- W3095488976 cites W1861492603 @default.
- W3095488976 cites W1977907196 @default.
- W3095488976 cites W2031489346 @default.
- W3095488976 cites W2066327668 @default.
- W3095488976 cites W2098739261 @default.
- W3095488976 cites W2110798204 @default.
- W3095488976 cites W2120432001 @default.
- W3095488976 cites W2125085157 @default.
- W3095488976 cites W2126628495 @default.
- W3095488976 cites W2129982915 @default.
- W3095488976 cites W2136922672 @default.
- W3095488976 cites W2172174689 @default.
- W3095488976 cites W2194775991 @default.
- W3095488976 cites W2245166388 @default.
- W3095488976 cites W2295119554 @default.
- W3095488976 cites W2472350142 @default.
- W3095488976 cites W2480140235 @default.
- W3095488976 cites W2557728737 @default.
- W3095488976 cites W2593341394 @default.
- W3095488976 cites W2618530766 @default.
- W3095488976 cites W2624283384 @default.
- W3095488976 cites W2772251146 @default.
- W3095488976 cites W2791496413 @default.
- W3095488976 cites W2793218141 @default.
- W3095488976 cites W2800017313 @default.
- W3095488976 cites W2886216548 @default.
- W3095488976 cites W2887850625 @default.
- W3095488976 cites W2890378588 @default.
- W3095488976 cites W2897655610 @default.
- W3095488976 cites W2906203190 @default.
- W3095488976 cites W2919115771 @default.
- W3095488976 cites W2942180685 @default.
- W3095488976 cites W2962949934 @default.
- W3095488976 cites W2971829447 @default.
- W3095488976 cites W2985631896 @default.
- W3095488976 cites W2986445670 @default.
- W3095488976 cites W2988916019 @default.
- W3095488976 cites W3106250896 @default.
- W3095488976 cites W4252642235 @default.
- W3095488976 cites W639708223 @default.
- W3095488976 doi "https://doi.org/10.1007/978-3-030-58728-4_5" @default.
- W3095488976 hasPublicationYear "2020" @default.
- W3095488976 type Work @default.
- W3095488976 sameAs 3095488976 @default.
- W3095488976 citedByCount "1" @default.
- W3095488976 countsByYear W30954889762023 @default.
- W3095488976 crossrefType "book-chapter" @default.
- W3095488976 hasAuthorship W3095488976A5027537629 @default.
- W3095488976 hasAuthorship W3095488976A5031143671 @default.
- W3095488976 hasAuthorship W3095488976A5032289111 @default.
- W3095488976 hasAuthorship W3095488976A5033991197 @default.
- W3095488976 hasAuthorship W3095488976A5065191681 @default.
- W3095488976 hasConcept C108583219 @default.
- W3095488976 hasConcept C113775141 @default.
- W3095488976 hasConcept C11413529 @default.
- W3095488976 hasConcept C119857082 @default.
- W3095488976 hasConcept C134306372 @default.
- W3095488976 hasConcept C139676723 @default.
- W3095488976 hasConcept C154945302 @default.
- W3095488976 hasConcept C2776214188 @default.
- W3095488976 hasConcept C2983860417 @default.
- W3095488976 hasConcept C33923547 @default.
- W3095488976 hasConcept C41008148 @default.
- W3095488976 hasConcept C6528762 @default.
- W3095488976 hasConcept C76155785 @default.
- W3095488976 hasConcept C94915269 @default.
- W3095488976 hasConceptScore W3095488976C108583219 @default.
- W3095488976 hasConceptScore W3095488976C113775141 @default.
- W3095488976 hasConceptScore W3095488976C11413529 @default.
- W3095488976 hasConceptScore W3095488976C119857082 @default.
- W3095488976 hasConceptScore W3095488976C134306372 @default.
- W3095488976 hasConceptScore W3095488976C139676723 @default.
- W3095488976 hasConceptScore W3095488976C154945302 @default.
- W3095488976 hasConceptScore W3095488976C2776214188 @default.
- W3095488976 hasConceptScore W3095488976C2983860417 @default.
- W3095488976 hasConceptScore W3095488976C33923547 @default.
- W3095488976 hasConceptScore W3095488976C41008148 @default.
- W3095488976 hasConceptScore W3095488976C6528762 @default.
- W3095488976 hasConceptScore W3095488976C76155785 @default.
- W3095488976 hasConceptScore W3095488976C94915269 @default.
- W3095488976 hasLocation W30954889761 @default.
- W3095488976 hasOpenAccess W3095488976 @default.
- W3095488976 hasPrimaryLocation W30954889761 @default.
- W3095488976 hasRelatedWork W2557202782 @default.
- W3095488976 hasRelatedWork W2790032261 @default.
- W3095488976 hasRelatedWork W2899819381 @default.
- W3095488976 hasRelatedWork W3128164723 @default.