Matches in SemOpenAlex for { <https://semopenalex.org/work/W3095600968> ?p ?o ?g. }
- W3095600968 abstract "Disease poses a significant threat to aquaculture. While there are a number of factors contributing to pathogen transmission risk, movement of live fish is considered the most important. Understanding live fish movement patterns for different aquaculture sectors is therefore crucial to predicting disease occurrence and necessary for the development of effective, risk-based biosecurity, surveillance and containment policies. However, despite this, our understanding of live movement patterns of key aquaculture species, namely salmonids and cyprinids, within England and Wales remains limited. In this study, networks reflecting live fish movements associated with the cyprinid and salmonid sectors in England and Wales were constructed. The structure, composition and key attributes of each network were examined and compared to provide insight into the nature of trading patterns and connectedness, as well as highlight sites at a high risk of spreading disease. Connectivity at both site and catchment level was considered to facilitate understanding at different resolutions, providing further insight into disease outbreaks, with industry wide implications. The study highlighted that connectivity through live fish movements was extensive for both industries. The salmonid and cyprinid networks comprised 2533 and 3645 nodes, with a network density of 5.81 × 10-4 and 4.2 × 10-4, respectively. The maximum network reach of 2392 in the salmonid network was higher, both in absolute terms and as a proportion of the overall network, compared to maximum network reach of 2085 in the cyprinid network. However, in contrast, the number of sites in the cyprinid network with a network reach greater than one was 513, compared to 171 in the salmonid network. Patterns of connectivity indicated potential for more frequent yet smaller scale disease outbreaks in the cyprinid industry and less frequent but larger scale outbreaks in the salmonid industry. Further, high connectivity between river catchments within both networks was shown, posing challenges for zoning at the catchment level for the purpose of disease management. In addition to providing insight into pathogen transmission and epidemic potential within the salmonid and cyprinid networks, the study highlights the utility of network analysis, and the value of accessible, accurate live fish movement data in this context. The application of outputs from this study, and network analysis methodology, to inform future disease surveillance and control policies, both within England and Wales and more broadly, is discussed." @default.
- W3095600968 created "2020-11-09" @default.
- W3095600968 creator A5010285074 @default.
- W3095600968 creator A5027610301 @default.
- W3095600968 creator A5029122918 @default.
- W3095600968 creator A5031734103 @default.
- W3095600968 creator A5036281289 @default.
- W3095600968 creator A5039171228 @default.
- W3095600968 date "2020-12-01" @default.
- W3095600968 modified "2023-10-16" @default.
- W3095600968 title "Comparative assessment of live cyprinid and salmonid movement networks in England and Wales" @default.
- W3095600968 cites W1547928099 @default.
- W3095600968 cites W1558298831 @default.
- W3095600968 cites W1573307889 @default.
- W3095600968 cites W1903203327 @default.
- W3095600968 cites W1965297469 @default.
- W3095600968 cites W1968688352 @default.
- W3095600968 cites W1969439513 @default.
- W3095600968 cites W1974781643 @default.
- W3095600968 cites W1991504538 @default.
- W3095600968 cites W1994734072 @default.
- W3095600968 cites W2010577336 @default.
- W3095600968 cites W2011160835 @default.
- W3095600968 cites W2011852928 @default.
- W3095600968 cites W2019061378 @default.
- W3095600968 cites W2022945065 @default.
- W3095600968 cites W2042685701 @default.
- W3095600968 cites W2042728064 @default.
- W3095600968 cites W2047368896 @default.
- W3095600968 cites W2050809086 @default.
- W3095600968 cites W2051295559 @default.
- W3095600968 cites W2064196346 @default.
- W3095600968 cites W2082825568 @default.
- W3095600968 cites W2084128770 @default.
- W3095600968 cites W2089080669 @default.
- W3095600968 cites W2112090702 @default.
- W3095600968 cites W2120069879 @default.
- W3095600968 cites W2132903122 @default.
- W3095600968 cites W2148393788 @default.
- W3095600968 cites W2154312423 @default.
- W3095600968 cites W2157848099 @default.
- W3095600968 cites W2158599675 @default.
- W3095600968 cites W2161283706 @default.
- W3095600968 cites W2165972024 @default.
- W3095600968 cites W2171193101 @default.
- W3095600968 cites W2181588054 @default.
- W3095600968 cites W2188546431 @default.
- W3095600968 cites W2256259525 @default.
- W3095600968 cites W2289308976 @default.
- W3095600968 cites W229097380 @default.
- W3095600968 cites W2291005623 @default.
- W3095600968 cites W2300305794 @default.
- W3095600968 cites W2487847228 @default.
- W3095600968 cites W2520685342 @default.
- W3095600968 cites W2582743722 @default.
- W3095600968 cites W2606932822 @default.
- W3095600968 cites W2676571852 @default.
- W3095600968 cites W2884417945 @default.
- W3095600968 cites W2885404199 @default.
- W3095600968 cites W2891697350 @default.
- W3095600968 cites W2944066321 @default.
- W3095600968 cites W2970257236 @default.
- W3095600968 cites W2984564353 @default.
- W3095600968 cites W2999275834 @default.
- W3095600968 cites W3028108335 @default.
- W3095600968 cites W3103362336 @default.
- W3095600968 doi "https://doi.org/10.1016/j.prevetmed.2020.105200" @default.
- W3095600968 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33234335" @default.
- W3095600968 hasPublicationYear "2020" @default.
- W3095600968 type Work @default.
- W3095600968 sameAs 3095600968 @default.
- W3095600968 citedByCount "0" @default.
- W3095600968 crossrefType "journal-article" @default.
- W3095600968 hasAuthorship W3095600968A5010285074 @default.
- W3095600968 hasAuthorship W3095600968A5027610301 @default.
- W3095600968 hasAuthorship W3095600968A5029122918 @default.
- W3095600968 hasAuthorship W3095600968A5031734103 @default.
- W3095600968 hasAuthorship W3095600968A5036281289 @default.
- W3095600968 hasAuthorship W3095600968A5039171228 @default.
- W3095600968 hasBestOaLocation W30956009681 @default.
- W3095600968 hasConcept C116675565 @default.
- W3095600968 hasConcept C119599485 @default.
- W3095600968 hasConcept C127413603 @default.
- W3095600968 hasConcept C159047783 @default.
- W3095600968 hasConcept C18903297 @default.
- W3095600968 hasConcept C205649164 @default.
- W3095600968 hasConcept C2781368420 @default.
- W3095600968 hasConcept C2909208804 @default.
- W3095600968 hasConcept C32946077 @default.
- W3095600968 hasConcept C505870484 @default.
- W3095600968 hasConcept C86803240 @default.
- W3095600968 hasConcept C86909935 @default.
- W3095600968 hasConceptScore W3095600968C116675565 @default.
- W3095600968 hasConceptScore W3095600968C119599485 @default.
- W3095600968 hasConceptScore W3095600968C127413603 @default.
- W3095600968 hasConceptScore W3095600968C159047783 @default.
- W3095600968 hasConceptScore W3095600968C18903297 @default.
- W3095600968 hasConceptScore W3095600968C205649164 @default.
- W3095600968 hasConceptScore W3095600968C2781368420 @default.
- W3095600968 hasConceptScore W3095600968C2909208804 @default.