Matches in SemOpenAlex for { <https://semopenalex.org/work/W3095696617> ?p ?o ?g. }
- W3095696617 endingPage "12" @default.
- W3095696617 startingPage "1" @default.
- W3095696617 abstract "Joint entity and relation extraction is an important task in natural language processing, which aims to extract all relational triples mentioned in a given sentence. In essence, the relational triples mentioned in a sentence are in the form of a set, which has no intrinsic order between elements and exhibits the permutation invariant feature. However, previous seq2seq-based models require sorting the set of relational triples into a sequence beforehand with some heuristic global rules, which destroys the natural set structure. In order to break this bottleneck, we treat joint entity and relation extraction as a direct set prediction problem, so that the extraction model is not burdened with predicting the order of multiple triples. To solve this set prediction problem, we propose networks featured by transformers with non-autoregressive parallel decoding. In contrast to autoregressive approaches that generate triples one by one in a specific order, the proposed networks are able to directly output the final set of relational triples in one shot. Furthermore, we also design a set-based loss that forces unique predictions through bipartite matching. Compared with cross-entropy loss that highly penalizes small shifts in triple order, the proposed bipartite matching loss is invariant to any permutation of predictions; thus, it can provide the proposed networks with a more accurate training signal by ignoring triple order and focusing on relation types and entities. Various experiments on two benchmark datasets demonstrate that our proposed model significantly outperforms the current state-of-the-art (SoTA) models. Training code and trained models are now publicly available at http://github.com/DianboWork/SPN4RE." @default.
- W3095696617 created "2020-11-09" @default.
- W3095696617 creator A5030783966 @default.
- W3095696617 creator A5031774490 @default.
- W3095696617 creator A5037558598 @default.
- W3095696617 creator A5071321132 @default.
- W3095696617 creator A5079010450 @default.
- W3095696617 date "2023-01-01" @default.
- W3095696617 modified "2023-10-10" @default.
- W3095696617 title "Joint Entity and Relation Extraction With Set Prediction Networks" @default.
- W3095696617 cites W1604644367 @default.
- W3095696617 cites W1981082061 @default.
- W3095696617 cites W2130942839 @default.
- W3095696617 cites W2134033474 @default.
- W3095696617 cites W2141461755 @default.
- W3095696617 cites W2149342630 @default.
- W3095696617 cites W2222512263 @default.
- W3095696617 cites W2250521169 @default.
- W3095696617 cites W2578454709 @default.
- W3095696617 cites W2739874095 @default.
- W3095696617 cites W2759056771 @default.
- W3095696617 cites W2798734500 @default.
- W3095696617 cites W2808142148 @default.
- W3095696617 cites W2905462022 @default.
- W3095696617 cites W2949212908 @default.
- W3095696617 cites W2950541952 @default.
- W3095696617 cites W2962784628 @default.
- W3095696617 cites W2963341956 @default.
- W3095696617 cites W2963403868 @default.
- W3095696617 cites W2963434219 @default.
- W3095696617 cites W2964089333 @default.
- W3095696617 cites W2964167098 @default.
- W3095696617 cites W2964217331 @default.
- W3095696617 cites W2970183140 @default.
- W3095696617 cites W2970832665 @default.
- W3095696617 cites W2989134874 @default.
- W3095696617 cites W2996825178 @default.
- W3095696617 cites W2997876626 @default.
- W3095696617 cites W3014413043 @default.
- W3095696617 cites W3015345022 @default.
- W3095696617 cites W3034617555 @default.
- W3095696617 doi "https://doi.org/10.1109/tnnls.2023.3264735" @default.
- W3095696617 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37067968" @default.
- W3095696617 hasPublicationYear "2023" @default.
- W3095696617 type Work @default.
- W3095696617 sameAs 3095696617 @default.
- W3095696617 citedByCount "16" @default.
- W3095696617 countsByYear W30956966172021 @default.
- W3095696617 countsByYear W30956966172023 @default.
- W3095696617 crossrefType "journal-article" @default.
- W3095696617 hasAuthorship W3095696617A5030783966 @default.
- W3095696617 hasAuthorship W3095696617A5031774490 @default.
- W3095696617 hasAuthorship W3095696617A5037558598 @default.
- W3095696617 hasAuthorship W3095696617A5071321132 @default.
- W3095696617 hasAuthorship W3095696617A5079010450 @default.
- W3095696617 hasBestOaLocation W30956966172 @default.
- W3095696617 hasConcept C11413529 @default.
- W3095696617 hasConcept C132525143 @default.
- W3095696617 hasConcept C153180895 @default.
- W3095696617 hasConcept C153604712 @default.
- W3095696617 hasConcept C154945302 @default.
- W3095696617 hasConcept C177264268 @default.
- W3095696617 hasConcept C195807954 @default.
- W3095696617 hasConcept C197657726 @default.
- W3095696617 hasConcept C199360897 @default.
- W3095696617 hasConcept C41008148 @default.
- W3095696617 hasConcept C80444323 @default.
- W3095696617 hasConceptScore W3095696617C11413529 @default.
- W3095696617 hasConceptScore W3095696617C132525143 @default.
- W3095696617 hasConceptScore W3095696617C153180895 @default.
- W3095696617 hasConceptScore W3095696617C153604712 @default.
- W3095696617 hasConceptScore W3095696617C154945302 @default.
- W3095696617 hasConceptScore W3095696617C177264268 @default.
- W3095696617 hasConceptScore W3095696617C195807954 @default.
- W3095696617 hasConceptScore W3095696617C197657726 @default.
- W3095696617 hasConceptScore W3095696617C199360897 @default.
- W3095696617 hasConceptScore W3095696617C41008148 @default.
- W3095696617 hasConceptScore W3095696617C80444323 @default.
- W3095696617 hasFunder F4320321001 @default.
- W3095696617 hasFunder F4320322847 @default.
- W3095696617 hasFunder F4320335777 @default.
- W3095696617 hasLocation W30956966171 @default.
- W3095696617 hasLocation W30956966172 @default.
- W3095696617 hasLocation W30956966173 @default.
- W3095696617 hasLocation W30956966174 @default.
- W3095696617 hasOpenAccess W3095696617 @default.
- W3095696617 hasPrimaryLocation W30956966171 @default.
- W3095696617 hasRelatedWork W1528934735 @default.
- W3095696617 hasRelatedWork W2033914206 @default.
- W3095696617 hasRelatedWork W2042327336 @default.
- W3095696617 hasRelatedWork W2046077695 @default.
- W3095696617 hasRelatedWork W2146076056 @default.
- W3095696617 hasRelatedWork W2163831990 @default.
- W3095696617 hasRelatedWork W2378160586 @default.
- W3095696617 hasRelatedWork W2996038082 @default.
- W3095696617 hasRelatedWork W3003836766 @default.
- W3095696617 hasRelatedWork W3047965787 @default.
- W3095696617 isParatext "false" @default.