Matches in SemOpenAlex for { <https://semopenalex.org/work/W3095809712> ?p ?o ?g. }
- W3095809712 abstract "Increasingly, modern Artificial Intelligence (AI) research has become more computationally intensive. However, a growing concern is that due to unequal access to computing power, only certain firms and elite universities have advantages in modern AI research. Using a novel dataset of 171394 papers from 57 prestigious computer science conferences, we document that firms, in particular, large technology firms and elite universities have increased participation in major AI conferences since deep learning's unanticipated rise in 2012. The effect is concentrated among elite universities, which are ranked 1-50 in the QS World University Rankings. Further, we find two strategies through which firms increased their presence in AI research: first, they have increased firm-only publications; and second, firms are collaborating primarily with elite universities. Consequently, this increased presence of firms and elite universities in AI research has crowded out mid-tier (QS ranked 201-300) and lower-tier (QS ranked 301-500) universities. To provide causal evidence that deep learning's unanticipated rise resulted in this divergence, we leverage the generalized synthetic control method, a data-driven counterfactual estimator. Using machine learning based text analysis methods, we provide additional evidence that the divergence between these two groups - large firms and non-elite universities - is driven by access to computing power or compute, which we term as the divide. This compute divide between large firms and non-elite universities increases concerns around bias and fairness within AI technology, and presents an obstacle towards democratizing AI. These results suggest that a lack of access to specialized equipment such as compute can de-democratize knowledge production." @default.
- W3095809712 created "2020-11-09" @default.
- W3095809712 creator A5055960166 @default.
- W3095809712 creator A5086474262 @default.
- W3095809712 date "2020-10-22" @default.
- W3095809712 modified "2023-09-25" @default.
- W3095809712 title "The De-democratization of AI: Deep Learning and the Compute Divide in Artificial Intelligence Research." @default.
- W3095809712 cites W1596684068 @default.
- W3095809712 cites W1841592590 @default.
- W3095809712 cites W1987275767 @default.
- W3095809712 cites W2025382157 @default.
- W3095809712 cites W2053637704 @default.
- W3095809712 cites W2074568535 @default.
- W3095809712 cites W2078554219 @default.
- W3095809712 cites W2109073718 @default.
- W3095809712 cites W2109614009 @default.
- W3095809712 cites W2117539524 @default.
- W3095809712 cites W2120432001 @default.
- W3095809712 cites W2140799492 @default.
- W3095809712 cites W2143464102 @default.
- W3095809712 cites W2146130798 @default.
- W3095809712 cites W2159063102 @default.
- W3095809712 cites W2163605009 @default.
- W3095809712 cites W2166351370 @default.
- W3095809712 cites W2175048538 @default.
- W3095809712 cites W2188049814 @default.
- W3095809712 cites W2315717040 @default.
- W3095809712 cites W2331253396 @default.
- W3095809712 cites W2566374673 @default.
- W3095809712 cites W2578906640 @default.
- W3095809712 cites W2755053267 @default.
- W3095809712 cites W2775461895 @default.
- W3095809712 cites W2784925536 @default.
- W3095809712 cites W2788481061 @default.
- W3095809712 cites W2788572835 @default.
- W3095809712 cites W2793022090 @default.
- W3095809712 cites W2891392898 @default.
- W3095809712 cites W2898730285 @default.
- W3095809712 cites W2908761755 @default.
- W3095809712 cites W2912698222 @default.
- W3095809712 cites W2918024231 @default.
- W3095809712 cites W2919115771 @default.
- W3095809712 cites W2946722863 @default.
- W3095809712 cites W2948173656 @default.
- W3095809712 cites W2952040751 @default.
- W3095809712 cites W2952339051 @default.
- W3095809712 cites W2952976310 @default.
- W3095809712 cites W2963809228 @default.
- W3095809712 cites W2971451584 @default.
- W3095809712 cites W2972245603 @default.
- W3095809712 cites W2978107402 @default.
- W3095809712 cites W2988076005 @default.
- W3095809712 cites W3007051557 @default.
- W3095809712 cites W3012624518 @default.
- W3095809712 cites W3041148953 @default.
- W3095809712 cites W3084203476 @default.
- W3095809712 cites W3087547017 @default.
- W3095809712 cites W3106878837 @default.
- W3095809712 cites W3121705696 @default.
- W3095809712 cites W3123106850 @default.
- W3095809712 cites W3125257362 @default.
- W3095809712 cites W3132871777 @default.
- W3095809712 cites W3140828483 @default.
- W3095809712 cites W3196208810 @default.
- W3095809712 cites W580941991 @default.
- W3095809712 hasPublicationYear "2020" @default.
- W3095809712 type Work @default.
- W3095809712 sameAs 3095809712 @default.
- W3095809712 citedByCount "8" @default.
- W3095809712 countsByYear W30958097122021 @default.
- W3095809712 crossrefType "posted-content" @default.
- W3095809712 hasAuthorship W3095809712A5055960166 @default.
- W3095809712 hasAuthorship W3095809712A5086474262 @default.
- W3095809712 hasConcept C108650721 @default.
- W3095809712 hasConcept C119857082 @default.
- W3095809712 hasConcept C153083717 @default.
- W3095809712 hasConcept C154945302 @default.
- W3095809712 hasConcept C15744967 @default.
- W3095809712 hasConcept C17058734 @default.
- W3095809712 hasConcept C17744445 @default.
- W3095809712 hasConcept C199539241 @default.
- W3095809712 hasConcept C2775987171 @default.
- W3095809712 hasConcept C41008148 @default.
- W3095809712 hasConcept C555826173 @default.
- W3095809712 hasConcept C77805123 @default.
- W3095809712 hasConcept C94625758 @default.
- W3095809712 hasConceptScore W3095809712C108650721 @default.
- W3095809712 hasConceptScore W3095809712C119857082 @default.
- W3095809712 hasConceptScore W3095809712C153083717 @default.
- W3095809712 hasConceptScore W3095809712C154945302 @default.
- W3095809712 hasConceptScore W3095809712C15744967 @default.
- W3095809712 hasConceptScore W3095809712C17058734 @default.
- W3095809712 hasConceptScore W3095809712C17744445 @default.
- W3095809712 hasConceptScore W3095809712C199539241 @default.
- W3095809712 hasConceptScore W3095809712C2775987171 @default.
- W3095809712 hasConceptScore W3095809712C41008148 @default.
- W3095809712 hasConceptScore W3095809712C555826173 @default.
- W3095809712 hasConceptScore W3095809712C77805123 @default.
- W3095809712 hasConceptScore W3095809712C94625758 @default.
- W3095809712 hasLocation W30958097121 @default.