Matches in SemOpenAlex for { <https://semopenalex.org/work/W3095874119> ?p ?o ?g. }
- W3095874119 endingPage "897" @default.
- W3095874119 startingPage "869" @default.
- W3095874119 abstract "In mechanics, one often describes microscopic processes such as those leading to friction between relative interfaces using macroscopic variables (relative velocity, temperature, etc.) in order to avoid models of intangible complexity. As a consequence, such macroscopic models are frequently nonsmooth, a prominent example being the Coulomb law of friction. In many cases, these models are perfectly adequate for engineering purposes. Formally, however, since the Fundamental Theorem of Existence and Uniqueness does not apply to these situations, one generally expects that these models possess forward nonuniqueness of solutions. Consequently, numerical computations of such systems might possibly unknowingly discard certain solutions. In this paper, we try to shed further light on this issue by studying solutions of a simple friction oscillator subject to stiction friction. The stiction law is a simple nonsmooth model of friction that is a modification of Coulomb based on the fundamental observation that the dynamic friction force, when the mass is in motion, is smaller than the static friction force during stick. The resulting piecewise smooth vector field of this discontinuous model does not follow the classical Filippov convention, and the concept of a Filippov solution cannot be used. Furthermore, some Carathéodory solutions, i.e., absolutely continuous solutions satisfying the differential equation in a weaker sense, are nonphysical. Therefore, we introduce the concept of stiction solutions. These are the Carathéodory solutions that are physically relevant, i.e., the ones that follow the stiction law. However, we find that some of the stiction solutions are forward nonunique in subregions of the slip onset. We call these solutions singular, in contrast to the regular stiction solutions that are forward unique. In order to further understanding of the nonunique dynamics, we then introduce a general regularization of the model. This gives a singularly perturbed problem that captures the main features of the original discontinuous problem. Using geometric singular perturbation theory, we identify a repelling slow manifold that separates the forward slipping from the forward sticking solutions, leading to high sensitivity to the initial conditions. On this slow manifold we find canard trajectories that have the physical interpretation of delaying the slip onset. Most interestingly, we find that these new solutions do not correspond to stiction solutions in the piecewise-smooth limit, and are therefore seemingly nonphysical, yet they are robust and appear generically in the class of regularizations we consider. Finally, we show that the regularized problem has a family of periodic orbits interacting with the canards. We observe that this family has a saddle stability and that it connects, in the rigid body limit, the two regular, slip-stick branches of the discontinuous problem, which are otherwise disconnected." @default.
- W3095874119 created "2020-11-09" @default.
- W3095874119 creator A5012378349 @default.
- W3095874119 creator A5059129528 @default.
- W3095874119 creator A5090223662 @default.
- W3095874119 date "2020-01-01" @default.
- W3095874119 modified "2023-09-25" @default.
- W3095874119 title "A Stiction Oscillator with Canards: On Piecewise Smooth Nonuniqueness and Its Resolution by Regularization Using Geometric Singular Perturbation Theory" @default.
- W3095874119 cites W1204777979 @default.
- W3095874119 cites W1484182740 @default.
- W3095874119 cites W1523909377 @default.
- W3095874119 cites W1967213678 @default.
- W3095874119 cites W1968274458 @default.
- W3095874119 cites W1969392248 @default.
- W3095874119 cites W1970878334 @default.
- W3095874119 cites W1987132391 @default.
- W3095874119 cites W2001265431 @default.
- W3095874119 cites W2008648979 @default.
- W3095874119 cites W2014073895 @default.
- W3095874119 cites W2016767879 @default.
- W3095874119 cites W2019935798 @default.
- W3095874119 cites W2020906290 @default.
- W3095874119 cites W2034847893 @default.
- W3095874119 cites W2036007634 @default.
- W3095874119 cites W2040606494 @default.
- W3095874119 cites W2041579436 @default.
- W3095874119 cites W2048723778 @default.
- W3095874119 cites W2049265628 @default.
- W3095874119 cites W2054100850 @default.
- W3095874119 cites W2056494071 @default.
- W3095874119 cites W2057162775 @default.
- W3095874119 cites W2061576464 @default.
- W3095874119 cites W2068793240 @default.
- W3095874119 cites W2071780273 @default.
- W3095874119 cites W2072112739 @default.
- W3095874119 cites W2073513907 @default.
- W3095874119 cites W2081245642 @default.
- W3095874119 cites W2088695346 @default.
- W3095874119 cites W2089995439 @default.
- W3095874119 cites W2093823001 @default.
- W3095874119 cites W2098085850 @default.
- W3095874119 cites W2099828389 @default.
- W3095874119 cites W2109403803 @default.
- W3095874119 cites W2128375302 @default.
- W3095874119 cites W2140121054 @default.
- W3095874119 cites W2157779618 @default.
- W3095874119 cites W2160775133 @default.
- W3095874119 cites W2168385914 @default.
- W3095874119 cites W2250083138 @default.
- W3095874119 cites W226431050 @default.
- W3095874119 cites W2582060669 @default.
- W3095874119 cites W2606790839 @default.
- W3095874119 cites W2963358147 @default.
- W3095874119 cites W3009412032 @default.
- W3095874119 cites W3016754324 @default.
- W3095874119 cites W3101645996 @default.
- W3095874119 cites W420509224 @default.
- W3095874119 cites W4230708622 @default.
- W3095874119 cites W4293078920 @default.
- W3095874119 cites W49800840 @default.
- W3095874119 cites W843153803 @default.
- W3095874119 cites W99189181 @default.
- W3095874119 doi "https://doi.org/10.1137/20m1348273" @default.
- W3095874119 hasPublicationYear "2020" @default.
- W3095874119 type Work @default.
- W3095874119 sameAs 3095874119 @default.
- W3095874119 citedByCount "11" @default.
- W3095874119 countsByYear W30958741192021 @default.
- W3095874119 countsByYear W30958741192022 @default.
- W3095874119 countsByYear W30958741192023 @default.
- W3095874119 crossrefType "journal-article" @default.
- W3095874119 hasAuthorship W3095874119A5012378349 @default.
- W3095874119 hasAuthorship W3095874119A5059129528 @default.
- W3095874119 hasAuthorship W3095874119A5090223662 @default.
- W3095874119 hasBestOaLocation W30958741192 @default.
- W3095874119 hasConcept C110339231 @default.
- W3095874119 hasConcept C121332964 @default.
- W3095874119 hasConcept C134306372 @default.
- W3095874119 hasConcept C164660894 @default.
- W3095874119 hasConcept C2777021972 @default.
- W3095874119 hasConcept C28826006 @default.
- W3095874119 hasConcept C33923547 @default.
- W3095874119 hasConcept C37977207 @default.
- W3095874119 hasConcept C62520636 @default.
- W3095874119 hasConcept C74650414 @default.
- W3095874119 hasConceptScore W3095874119C110339231 @default.
- W3095874119 hasConceptScore W3095874119C121332964 @default.
- W3095874119 hasConceptScore W3095874119C134306372 @default.
- W3095874119 hasConceptScore W3095874119C164660894 @default.
- W3095874119 hasConceptScore W3095874119C2777021972 @default.
- W3095874119 hasConceptScore W3095874119C28826006 @default.
- W3095874119 hasConceptScore W3095874119C33923547 @default.
- W3095874119 hasConceptScore W3095874119C37977207 @default.
- W3095874119 hasConceptScore W3095874119C62520636 @default.
- W3095874119 hasConceptScore W3095874119C74650414 @default.
- W3095874119 hasIssue "4" @default.
- W3095874119 hasLocation W30958741191 @default.
- W3095874119 hasLocation W30958741192 @default.