Matches in SemOpenAlex for { <https://semopenalex.org/work/W3095989101> ?p ?o ?g. }
- W3095989101 endingPage "19" @default.
- W3095989101 startingPage "1" @default.
- W3095989101 abstract "In this study, a hybrid machine learning (ML) technique was proposed to predict the bearing capacity of elliptical CFST columns under axial load. The proposed model was Adaptive Neurofuzzy Inference System (ANFIS) combined with Real Coded Genetic Algorithm (RCGA), denoted as RCGA-ANFIS. The evaluation of the model was performed using the coefficient of determination (R2) and root mean square error (RMSE). The results showed that the RCGA-ANFIS (R2 = 0.974) was more reliable and effective than conventional gradient descent (GD) technique (R2 = 0.952). The accuracy of the present work was found superior to the results published in the literature (R2 = 0.776 or 0.768) when predicting the load capacity of elliptical CFST columns. Finally, sensitivity analysis showed that the thickness of the steel tube and the minor axis length of the elliptical cross section were the most influential parameters. For practical application, a Graphical User Interface (GUI) was developed in MATLAB for researchers and engineers and to support the teaching and interpretation of the axial behavior of CFST columns." @default.
- W3095989101 created "2020-11-09" @default.
- W3095989101 creator A5024957412 @default.
- W3095989101 date "2020-10-28" @default.
- W3095989101 modified "2023-09-23" @default.
- W3095989101 title "Practical Hybrid Machine Learning Approach for Estimation of Ultimate Load of Elliptical Concrete-Filled Steel Tubular Columns under Axial Loading" @default.
- W3095989101 cites W1005239786 @default.
- W3095989101 cites W1728235758 @default.
- W3095989101 cites W1797651134 @default.
- W3095989101 cites W1970363642 @default.
- W3095989101 cites W1988524289 @default.
- W3095989101 cites W1992852845 @default.
- W3095989101 cites W2014445010 @default.
- W3095989101 cites W2019207321 @default.
- W3095989101 cites W2021461169 @default.
- W3095989101 cites W2039691911 @default.
- W3095989101 cites W2046712081 @default.
- W3095989101 cites W2047094503 @default.
- W3095989101 cites W2047175039 @default.
- W3095989101 cites W2076193817 @default.
- W3095989101 cites W2078887779 @default.
- W3095989101 cites W2078993895 @default.
- W3095989101 cites W2085781934 @default.
- W3095989101 cites W2088373062 @default.
- W3095989101 cites W2090964380 @default.
- W3095989101 cites W2097571405 @default.
- W3095989101 cites W2102823893 @default.
- W3095989101 cites W2137634615 @default.
- W3095989101 cites W2148264239 @default.
- W3095989101 cites W2150035665 @default.
- W3095989101 cites W2171825776 @default.
- W3095989101 cites W2337503050 @default.
- W3095989101 cites W2529974570 @default.
- W3095989101 cites W2535072730 @default.
- W3095989101 cites W2555292760 @default.
- W3095989101 cites W2738651938 @default.
- W3095989101 cites W2756137307 @default.
- W3095989101 cites W2766876420 @default.
- W3095989101 cites W2767141767 @default.
- W3095989101 cites W2891479980 @default.
- W3095989101 cites W2908619734 @default.
- W3095989101 cites W2914623012 @default.
- W3095989101 cites W2922261284 @default.
- W3095989101 cites W2923370583 @default.
- W3095989101 cites W2943863934 @default.
- W3095989101 cites W2943949709 @default.
- W3095989101 cites W2946194644 @default.
- W3095989101 cites W2948124597 @default.
- W3095989101 cites W2953855109 @default.
- W3095989101 cites W2956085207 @default.
- W3095989101 cites W2965383324 @default.
- W3095989101 cites W2969779475 @default.
- W3095989101 cites W2987946516 @default.
- W3095989101 cites W2988268571 @default.
- W3095989101 cites W2988920695 @default.
- W3095989101 cites W2996719086 @default.
- W3095989101 cites W2998202675 @default.
- W3095989101 cites W3001229584 @default.
- W3095989101 cites W3007270451 @default.
- W3095989101 cites W3009425669 @default.
- W3095989101 cites W3011935706 @default.
- W3095989101 cites W3013155739 @default.
- W3095989101 cites W3025029809 @default.
- W3095989101 cites W3025484060 @default.
- W3095989101 cites W3044546013 @default.
- W3095989101 cites W3046668209 @default.
- W3095989101 cites W3049666114 @default.
- W3095989101 cites W3087338291 @default.
- W3095989101 cites W3087439997 @default.
- W3095989101 cites W3088669176 @default.
- W3095989101 cites W3210748623 @default.
- W3095989101 cites W802508313 @default.
- W3095989101 doi "https://doi.org/10.1155/2020/8832522" @default.
- W3095989101 hasPublicationYear "2020" @default.
- W3095989101 type Work @default.
- W3095989101 sameAs 3095989101 @default.
- W3095989101 citedByCount "17" @default.
- W3095989101 countsByYear W30959891012020 @default.
- W3095989101 countsByYear W30959891012021 @default.
- W3095989101 countsByYear W30959891012022 @default.
- W3095989101 countsByYear W30959891012023 @default.
- W3095989101 crossrefType "journal-article" @default.
- W3095989101 hasAuthorship W3095989101A5024957412 @default.
- W3095989101 hasBestOaLocation W30959891011 @default.
- W3095989101 hasConcept C105795698 @default.
- W3095989101 hasConcept C111919701 @default.
- W3095989101 hasConcept C119857082 @default.
- W3095989101 hasConcept C127413603 @default.
- W3095989101 hasConcept C139945424 @default.
- W3095989101 hasConcept C153258448 @default.
- W3095989101 hasConcept C154945302 @default.
- W3095989101 hasConcept C186108316 @default.
- W3095989101 hasConcept C192562407 @default.
- W3095989101 hasConcept C195975749 @default.
- W3095989101 hasConcept C2780365114 @default.
- W3095989101 hasConcept C2988105877 @default.
- W3095989101 hasConcept C33923547 @default.
- W3095989101 hasConcept C41008148 @default.