Matches in SemOpenAlex for { <https://semopenalex.org/work/W3096017037> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3096017037 abstract "Abstract Oil and gas exploration is facing an ever-increasing demand for cost-efficient drilling operations. Improvement of the rate of penetration (ROP) of the drill bit is key in solving the aforementioned challenge. The objective of this study is to develop a more accurate and effective predictive and optimization model for ROP that utilizes a hybrid artificial intelligence model based on an improved genetic algorithm (IGA) and artificial neural network (ANN) for further optimization of drilling processes. Real field drilling datasets such as the bit type, bit drilling time, rotation per minute, weight on bit, torque, formation type, rock properties, hydraulics, and drilling mud properties are collected and input to train, validate and test the developed IGA-ANN model for ROP prediction and optimization. We apply a Savitzky-Golay (SG) smoothing filter to reduce the noise from the raw datasets. We apply IGA to find the optimal structures, parameters, and types of input of the ANN. By using supplementary population, multi-type crossover and mutation and adaptive dynamics probability adjustments, the developed model, IGA-ANN, avoid the limited optimization and local convergence problems in the classical Genetic Algorithm (GA). Using the developed prediction model, we obtain the optimal operational parameter within a region considering drilling equipment capability and wear to maximize ROP. From numerical results, we find that the optimal structures and parameters of the ANN can be obtained efficiently by the developed method. For comparison, we compare IGA-ANN with the classical wrapper algorithm for parameter selection. The results indicate that IGA-ANN is more stable and accurate than the wrapper algorithm. We compare the true ROP and predicted ROP from the developed IGA-ANN model using accuracy indicators such as root mean square error, mean absolute error, and regression coefficient (R2). For comparison, the accuracy of the classical regression model is presented. We find that IGA-ANN yielded more accurate test results (R2 = 0.97). We compare the results of IGA-ANN trained using SG smoothing filter processed data and raw data. The test results show that the noise reduction approach used is very efficient in increasing the accuracy of IGA-ANN. Using the developed model, we optimize the choice of drilling operational parameters within a region considering drilling equipment capability and wear. We find that the optimization can increase average ROP significantly. We develop an efficient and robust algorithm, IGA-ANN, for ROP prediction and optimization. Compared with the classical wrapper algorithm and multiple regression model, the IGA-ANN can efficiently optimize the structures, parameters and types of inputs of ANN to achieve higher ROP prediction accuracy. By utilizing the developed model, we can efficiently maximize ROP and minimize the drilling operation cost." @default.
- W3096017037 created "2020-11-09" @default.
- W3096017037 creator A5012301938 @default.
- W3096017037 creator A5074576488 @default.
- W3096017037 date "2020-11-09" @default.
- W3096017037 modified "2023-10-16" @default.
- W3096017037 title "Prediction and Optimization of Rate of Penetration using a Hybrid Artificial Intelligence Method based on an Improved Genetic Algorithm and Artificial Neural Network" @default.
- W3096017037 cites W1968376774 @default.
- W3096017037 cites W1973074866 @default.
- W3096017037 cites W2012390853 @default.
- W3096017037 cites W2013345849 @default.
- W3096017037 cites W2019207321 @default.
- W3096017037 cites W2025924882 @default.
- W3096017037 cites W2028569555 @default.
- W3096017037 cites W2043222892 @default.
- W3096017037 cites W2055696373 @default.
- W3096017037 cites W2058269445 @default.
- W3096017037 cites W2061073245 @default.
- W3096017037 cites W2072180799 @default.
- W3096017037 cites W2089051900 @default.
- W3096017037 cites W2111954528 @default.
- W3096017037 cites W2150823344 @default.
- W3096017037 cites W2162635690 @default.
- W3096017037 cites W2469380124 @default.
- W3096017037 cites W2501365774 @default.
- W3096017037 cites W2561553637 @default.
- W3096017037 cites W2580760326 @default.
- W3096017037 cites W2767086801 @default.
- W3096017037 cites W2891234523 @default.
- W3096017037 cites W2899490418 @default.
- W3096017037 cites W2904760941 @default.
- W3096017037 doi "https://doi.org/10.2118/203229-ms" @default.
- W3096017037 hasPublicationYear "2020" @default.
- W3096017037 type Work @default.
- W3096017037 sameAs 3096017037 @default.
- W3096017037 citedByCount "7" @default.
- W3096017037 countsByYear W30960170372022 @default.
- W3096017037 countsByYear W30960170372023 @default.
- W3096017037 crossrefType "proceedings-article" @default.
- W3096017037 hasAuthorship W3096017037A5012301938 @default.
- W3096017037 hasAuthorship W3096017037A5074576488 @default.
- W3096017037 hasConcept C11413529 @default.
- W3096017037 hasConcept C119857082 @default.
- W3096017037 hasConcept C122507166 @default.
- W3096017037 hasConcept C126255220 @default.
- W3096017037 hasConcept C127413603 @default.
- W3096017037 hasConcept C154945302 @default.
- W3096017037 hasConcept C25197100 @default.
- W3096017037 hasConcept C2776497017 @default.
- W3096017037 hasConcept C31972630 @default.
- W3096017037 hasConcept C33923547 @default.
- W3096017037 hasConcept C3770464 @default.
- W3096017037 hasConcept C41008148 @default.
- W3096017037 hasConcept C50644808 @default.
- W3096017037 hasConcept C78519656 @default.
- W3096017037 hasConcept C8880873 @default.
- W3096017037 hasConceptScore W3096017037C11413529 @default.
- W3096017037 hasConceptScore W3096017037C119857082 @default.
- W3096017037 hasConceptScore W3096017037C122507166 @default.
- W3096017037 hasConceptScore W3096017037C126255220 @default.
- W3096017037 hasConceptScore W3096017037C127413603 @default.
- W3096017037 hasConceptScore W3096017037C154945302 @default.
- W3096017037 hasConceptScore W3096017037C25197100 @default.
- W3096017037 hasConceptScore W3096017037C2776497017 @default.
- W3096017037 hasConceptScore W3096017037C31972630 @default.
- W3096017037 hasConceptScore W3096017037C33923547 @default.
- W3096017037 hasConceptScore W3096017037C3770464 @default.
- W3096017037 hasConceptScore W3096017037C41008148 @default.
- W3096017037 hasConceptScore W3096017037C50644808 @default.
- W3096017037 hasConceptScore W3096017037C78519656 @default.
- W3096017037 hasConceptScore W3096017037C8880873 @default.
- W3096017037 hasLocation W30960170371 @default.
- W3096017037 hasOpenAccess W3096017037 @default.
- W3096017037 hasPrimaryLocation W30960170371 @default.
- W3096017037 hasRelatedWork W1550240066 @default.
- W3096017037 hasRelatedWork W1998415800 @default.
- W3096017037 hasRelatedWork W2359860614 @default.
- W3096017037 hasRelatedWork W2359871316 @default.
- W3096017037 hasRelatedWork W2380898791 @default.
- W3096017037 hasRelatedWork W2382761789 @default.
- W3096017037 hasRelatedWork W2386411737 @default.
- W3096017037 hasRelatedWork W2387689044 @default.
- W3096017037 hasRelatedWork W2389350124 @default.
- W3096017037 hasRelatedWork W2392110728 @default.
- W3096017037 isParatext "false" @default.
- W3096017037 isRetracted "false" @default.
- W3096017037 magId "3096017037" @default.
- W3096017037 workType "article" @default.