Matches in SemOpenAlex for { <https://semopenalex.org/work/W3096022091> ?p ?o ?g. }
- W3096022091 endingPage "108679" @default.
- W3096022091 startingPage "108679" @default.
- W3096022091 abstract "To make up the deficiencies of single methods in lithium-ion battery state of health (SOH) and remaining useful life (RUL) estimation, this paper presents a novel hybrid method using unscented particle filter (UPF) with optimized multiple kernel relevance vector machine (OMKRVM). Firstly, the errors between the initial estimation by UPF and the actual capacity are obtained. After that, the residuals are reconstructed by complementary ensemble empirical mode decomposition (CEEMD) to reduce interference. In addition, OMKRVM is adopted to provide multiple predictive abilities, and kernel parameters and weights of OMKRVM are yielded by the grid search. Finally, the initial estimation is corrected by the predicted residuals using OMKRVM to further improve prediction performance. The new method (UPF-OMKRVM) is compared with existing methods in predicting the degradation process of lithium-ion battery. The experimental results show that the UPF-OMKRVM has high prediction accuracy in lithium-ion battery SOH and RUL estimation." @default.
- W3096022091 created "2020-11-09" @default.
- W3096022091 creator A5014777126 @default.
- W3096022091 creator A5017721496 @default.
- W3096022091 creator A5032636287 @default.
- W3096022091 date "2021-01-01" @default.
- W3096022091 modified "2023-10-18" @default.
- W3096022091 title "A hybrid prognostic strategy with unscented particle filter and optimized multiple kernel relevance vector machine for lithium-ion battery" @default.
- W3096022091 cites W1015042224 @default.
- W3096022091 cites W2027753389 @default.
- W3096022091 cites W2042683698 @default.
- W3096022091 cites W2050211799 @default.
- W3096022091 cites W2057144102 @default.
- W3096022091 cites W2064175677 @default.
- W3096022091 cites W2078279667 @default.
- W3096022091 cites W2120390927 @default.
- W3096022091 cites W2142635246 @default.
- W3096022091 cites W2161592627 @default.
- W3096022091 cites W2288811688 @default.
- W3096022091 cites W2586311465 @default.
- W3096022091 cites W2625850062 @default.
- W3096022091 cites W2756628278 @default.
- W3096022091 cites W2759525351 @default.
- W3096022091 cites W2766067319 @default.
- W3096022091 cites W2770378831 @default.
- W3096022091 cites W2781930323 @default.
- W3096022091 cites W2795126147 @default.
- W3096022091 cites W2808653156 @default.
- W3096022091 cites W2842161686 @default.
- W3096022091 cites W2884678912 @default.
- W3096022091 cites W2901594529 @default.
- W3096022091 cites W2915034955 @default.
- W3096022091 cites W2938161931 @default.
- W3096022091 cites W2955033741 @default.
- W3096022091 cites W2973942754 @default.
- W3096022091 cites W4234416276 @default.
- W3096022091 doi "https://doi.org/10.1016/j.measurement.2020.108679" @default.
- W3096022091 hasPublicationYear "2021" @default.
- W3096022091 type Work @default.
- W3096022091 sameAs 3096022091 @default.
- W3096022091 citedByCount "35" @default.
- W3096022091 countsByYear W30960220912021 @default.
- W3096022091 countsByYear W30960220912022 @default.
- W3096022091 countsByYear W30960220912023 @default.
- W3096022091 crossrefType "journal-article" @default.
- W3096022091 hasAuthorship W3096022091A5014777126 @default.
- W3096022091 hasAuthorship W3096022091A5017721496 @default.
- W3096022091 hasAuthorship W3096022091A5032636287 @default.
- W3096022091 hasConcept C106131492 @default.
- W3096022091 hasConcept C11413529 @default.
- W3096022091 hasConcept C114614502 @default.
- W3096022091 hasConcept C121332964 @default.
- W3096022091 hasConcept C12267149 @default.
- W3096022091 hasConcept C127413603 @default.
- W3096022091 hasConcept C154945302 @default.
- W3096022091 hasConcept C157286648 @default.
- W3096022091 hasConcept C163258240 @default.
- W3096022091 hasConcept C25570617 @default.
- W3096022091 hasConcept C2775924081 @default.
- W3096022091 hasConcept C2779197387 @default.
- W3096022091 hasConcept C31972630 @default.
- W3096022091 hasConcept C33923547 @default.
- W3096022091 hasConcept C41008148 @default.
- W3096022091 hasConcept C47446073 @default.
- W3096022091 hasConcept C52421305 @default.
- W3096022091 hasConcept C555008776 @default.
- W3096022091 hasConcept C62520636 @default.
- W3096022091 hasConcept C74193536 @default.
- W3096022091 hasConceptScore W3096022091C106131492 @default.
- W3096022091 hasConceptScore W3096022091C11413529 @default.
- W3096022091 hasConceptScore W3096022091C114614502 @default.
- W3096022091 hasConceptScore W3096022091C121332964 @default.
- W3096022091 hasConceptScore W3096022091C12267149 @default.
- W3096022091 hasConceptScore W3096022091C127413603 @default.
- W3096022091 hasConceptScore W3096022091C154945302 @default.
- W3096022091 hasConceptScore W3096022091C157286648 @default.
- W3096022091 hasConceptScore W3096022091C163258240 @default.
- W3096022091 hasConceptScore W3096022091C25570617 @default.
- W3096022091 hasConceptScore W3096022091C2775924081 @default.
- W3096022091 hasConceptScore W3096022091C2779197387 @default.
- W3096022091 hasConceptScore W3096022091C31972630 @default.
- W3096022091 hasConceptScore W3096022091C33923547 @default.
- W3096022091 hasConceptScore W3096022091C41008148 @default.
- W3096022091 hasConceptScore W3096022091C47446073 @default.
- W3096022091 hasConceptScore W3096022091C52421305 @default.
- W3096022091 hasConceptScore W3096022091C555008776 @default.
- W3096022091 hasConceptScore W3096022091C62520636 @default.
- W3096022091 hasConceptScore W3096022091C74193536 @default.
- W3096022091 hasFunder F4320335787 @default.
- W3096022091 hasLocation W30960220911 @default.
- W3096022091 hasOpenAccess W3096022091 @default.
- W3096022091 hasPrimaryLocation W30960220911 @default.
- W3096022091 hasRelatedWork W1676947633 @default.
- W3096022091 hasRelatedWork W2151708738 @default.
- W3096022091 hasRelatedWork W2969332118 @default.
- W3096022091 hasRelatedWork W3016864212 @default.
- W3096022091 hasRelatedWork W3091811388 @default.
- W3096022091 hasRelatedWork W3204234742 @default.