Matches in SemOpenAlex for { <https://semopenalex.org/work/W3096045975> ?p ?o ?g. }
- W3096045975 endingPage "972" @default.
- W3096045975 startingPage "947" @default.
- W3096045975 abstract "Data preprocessing is a necessary core in data mining. Preprocessing involves handling missing values, outlier and noise removal, data normalization, etc. The problem with existing methods which handle missing values is that they deal with the whole data ignoring the characteristics of the data (e.g., similarities and differences between cases). This paper focuses on handling the missing values using machine learning methods taking into account the characteristics of the data. The proposed preprocessing method clusters the data, then imputes the missing values in each cluster depending on the data belong to this cluster rather than the whole data. The author performed a comparative study of the proposed method and ten popular imputation methods namely mean, median, mode, KNN, IterativeImputer, IterativeSVD, Softimpute, Mice, Forimp, and Missforest. The experiments were done on four datasets with different number of clusters, sizes, and shapes. The empirical study showed better effectiveness from the point of view of imputation time, Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and coefficient of determination (R2 score) (i.e., the similarity of the original removed value to the imputed one)." @default.
- W3096045975 created "2020-11-09" @default.
- W3096045975 creator A5063114495 @default.
- W3096045975 date "2021-01-04" @default.
- W3096045975 modified "2023-09-23" @default.
- W3096045975 title "Towards improving machine learning algorithms accuracy by benefiting from similarities between cases" @default.
- W3096045975 cites W1500435738 @default.
- W3096045975 cites W1571313647 @default.
- W3096045975 cites W1598553907 @default.
- W3096045975 cites W1740778703 @default.
- W3096045975 cites W1841961408 @default.
- W3096045975 cites W1888898201 @default.
- W3096045975 cites W1983479840 @default.
- W3096045975 cites W1991635626 @default.
- W3096045975 cites W1992329416 @default.
- W3096045975 cites W2017665047 @default.
- W3096045975 cites W2030582242 @default.
- W3096045975 cites W2039015671 @default.
- W3096045975 cites W2068331431 @default.
- W3096045975 cites W2096863518 @default.
- W3096045975 cites W2102720558 @default.
- W3096045975 cites W2115098571 @default.
- W3096045975 cites W2116781287 @default.
- W3096045975 cites W2125464731 @default.
- W3096045975 cites W2128372630 @default.
- W3096045975 cites W2161375627 @default.
- W3096045975 cites W2162210260 @default.
- W3096045975 cites W2162772535 @default.
- W3096045975 cites W2167546040 @default.
- W3096045975 cites W2170674956 @default.
- W3096045975 cites W2295351501 @default.
- W3096045975 cites W2318487091 @default.
- W3096045975 cites W2424914361 @default.
- W3096045975 cites W2480680997 @default.
- W3096045975 cites W2598379669 @default.
- W3096045975 cites W2765426202 @default.
- W3096045975 cites W2782358481 @default.
- W3096045975 cites W2804428911 @default.
- W3096045975 cites W2907678651 @default.
- W3096045975 cites W2910262972 @default.
- W3096045975 cites W2916636227 @default.
- W3096045975 cites W2918096358 @default.
- W3096045975 cites W2945077443 @default.
- W3096045975 cites W2949148219 @default.
- W3096045975 cites W2949679216 @default.
- W3096045975 cites W2958786037 @default.
- W3096045975 cites W2963050660 @default.
- W3096045975 cites W2963126431 @default.
- W3096045975 cites W2995148135 @default.
- W3096045975 cites W3045755387 @default.
- W3096045975 cites W4237650824 @default.
- W3096045975 doi "https://doi.org/10.3233/jifs-201077" @default.
- W3096045975 hasPublicationYear "2021" @default.
- W3096045975 type Work @default.
- W3096045975 sameAs 3096045975 @default.
- W3096045975 citedByCount "5" @default.
- W3096045975 countsByYear W30960459752022 @default.
- W3096045975 crossrefType "journal-article" @default.
- W3096045975 hasAuthorship W3096045975A5063114495 @default.
- W3096045975 hasConcept C103278499 @default.
- W3096045975 hasConcept C10551718 @default.
- W3096045975 hasConcept C105795698 @default.
- W3096045975 hasConcept C11413529 @default.
- W3096045975 hasConcept C115961682 @default.
- W3096045975 hasConcept C119857082 @default.
- W3096045975 hasConcept C124101348 @default.
- W3096045975 hasConcept C136886441 @default.
- W3096045975 hasConcept C139945424 @default.
- W3096045975 hasConcept C144024400 @default.
- W3096045975 hasConcept C153180895 @default.
- W3096045975 hasConcept C154945302 @default.
- W3096045975 hasConcept C19165224 @default.
- W3096045975 hasConcept C33923547 @default.
- W3096045975 hasConcept C34736171 @default.
- W3096045975 hasConcept C41008148 @default.
- W3096045975 hasConcept C58041806 @default.
- W3096045975 hasConcept C79337645 @default.
- W3096045975 hasConcept C9357733 @default.
- W3096045975 hasConceptScore W3096045975C103278499 @default.
- W3096045975 hasConceptScore W3096045975C10551718 @default.
- W3096045975 hasConceptScore W3096045975C105795698 @default.
- W3096045975 hasConceptScore W3096045975C11413529 @default.
- W3096045975 hasConceptScore W3096045975C115961682 @default.
- W3096045975 hasConceptScore W3096045975C119857082 @default.
- W3096045975 hasConceptScore W3096045975C124101348 @default.
- W3096045975 hasConceptScore W3096045975C136886441 @default.
- W3096045975 hasConceptScore W3096045975C139945424 @default.
- W3096045975 hasConceptScore W3096045975C144024400 @default.
- W3096045975 hasConceptScore W3096045975C153180895 @default.
- W3096045975 hasConceptScore W3096045975C154945302 @default.
- W3096045975 hasConceptScore W3096045975C19165224 @default.
- W3096045975 hasConceptScore W3096045975C33923547 @default.
- W3096045975 hasConceptScore W3096045975C34736171 @default.
- W3096045975 hasConceptScore W3096045975C41008148 @default.
- W3096045975 hasConceptScore W3096045975C58041806 @default.
- W3096045975 hasConceptScore W3096045975C79337645 @default.
- W3096045975 hasConceptScore W3096045975C9357733 @default.
- W3096045975 hasIssue "1" @default.