Matches in SemOpenAlex for { <https://semopenalex.org/work/W3096062020> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3096062020 abstract "A regression model is proposed for the analysis of an ordinal response variable depending on a set of multiple covariates containing ordinal and potentially other types of variables. The ordinal predictors are not treated as nominal-scaled variables, and neither transformed into interval-scaled variables. Therefore, the information provided by the order of their categories is neither ignored nor overstated. The proportional odds cumulative logit model (POCLM, see McCullagh (1980)) is used for the ordinal response, and constrained maximum likelihood estimation is used to account for the ordinality of covariates. Ordinal predictors are coded by dummy variables. The parameters associated with the categories of the ordinal predictor(s) are constrained, enforcing them to be monotonic (isotonic or antitonic). A monotonicity direction classification procedure (MDCP) is proposed for classifying the monotonicity direction of the coefficients of the ordinal predictors, also providing information whether observations are compatible with both or no monotonicity direction. The MDCP consists of three steps, which offers two instances of decisions to be made by the researcher. Asymptotic theory of the constrained MLE (CMLE) for the POCLM is discussed. Some results of the asymptotic theory of the unconstrained MLE developed by Fahrmeir and Kaufmann (1985) are made explicit for the POCLM. These results are further adapted to extend the analysis of asymptotic theory to the constrained case. Asymptotic existence and strong consistency of the CMLE for the POCLM are proved. Asymptotic normality is also discussed. Different scenarios are identified in the analysis of confidence regions of the CMLE for the POCLM, which leads to the definition of three alternative confidence regions. Their results are compared through simulations in terms of their coverage probability. Similarly, different scenarios are identified in the analysis of confidence intervals of the CMLE and alternative definitions are provided. However, the fact that monotonicity is a feature of a parameter vector rather than of a singular parameter value becomes a problem for their computation, which is also discussed. Two monotonicity tests for the set of parameters of an ordinal predictor are proposed. One of them is based on a Bonferroni correction of the confidence intervals associated with the parameters of an ordinal predictor, and the other uses the analysis of confidence regions. Six constrained estimation methods are proposed depending on different approaches for making the decision of imposing the monotonicity constraints to the parameters of an ordinal predictor or not. Each one of them uses the steps of the MDCP or one of the two monotonicity tests. The constrained estimation methods are compared to the unconstrained proportional odds cumulative logit model through simulations under several settings. The results of using different scoring systems that transform ordinal variables into interval-scaled variables in regression analysis are compared to the ones obtained when using the proposed constrained regression methods based on simulations. The constrained model is applied to real data explaining a 10-Points Likert scale quality of life self-assessment variable by ordinal and other predictors." @default.
- W3096062020 created "2020-11-09" @default.
- W3096062020 creator A5017885151 @default.
- W3096062020 creator A5071602266 @default.
- W3096062020 date "2020-09-28" @default.
- W3096062020 modified "2023-09-23" @default.
- W3096062020 title "Using monotonicity constraints for the treatment of ordinal data in regression analysis" @default.
- W3096062020 hasPublicationYear "2020" @default.
- W3096062020 type Work @default.
- W3096062020 sameAs 3096062020 @default.
- W3096062020 citedByCount "0" @default.
- W3096062020 crossrefType "dissertation" @default.
- W3096062020 hasAuthorship W3096062020A5017885151 @default.
- W3096062020 hasAuthorship W3096062020A5071602266 @default.
- W3096062020 hasConcept C105795698 @default.
- W3096062020 hasConcept C110313322 @default.
- W3096062020 hasConcept C118615104 @default.
- W3096062020 hasConcept C119043178 @default.
- W3096062020 hasConcept C119047807 @default.
- W3096062020 hasConcept C134306372 @default.
- W3096062020 hasConcept C140331021 @default.
- W3096062020 hasConcept C149782125 @default.
- W3096062020 hasConcept C152877465 @default.
- W3096062020 hasConcept C2776436953 @default.
- W3096062020 hasConcept C28826006 @default.
- W3096062020 hasConcept C33923547 @default.
- W3096062020 hasConcept C72169020 @default.
- W3096062020 hasConcept C81386100 @default.
- W3096062020 hasConcept C85461838 @default.
- W3096062020 hasConcept C87227347 @default.
- W3096062020 hasConceptScore W3096062020C105795698 @default.
- W3096062020 hasConceptScore W3096062020C110313322 @default.
- W3096062020 hasConceptScore W3096062020C118615104 @default.
- W3096062020 hasConceptScore W3096062020C119043178 @default.
- W3096062020 hasConceptScore W3096062020C119047807 @default.
- W3096062020 hasConceptScore W3096062020C134306372 @default.
- W3096062020 hasConceptScore W3096062020C140331021 @default.
- W3096062020 hasConceptScore W3096062020C149782125 @default.
- W3096062020 hasConceptScore W3096062020C152877465 @default.
- W3096062020 hasConceptScore W3096062020C2776436953 @default.
- W3096062020 hasConceptScore W3096062020C28826006 @default.
- W3096062020 hasConceptScore W3096062020C33923547 @default.
- W3096062020 hasConceptScore W3096062020C72169020 @default.
- W3096062020 hasConceptScore W3096062020C81386100 @default.
- W3096062020 hasConceptScore W3096062020C85461838 @default.
- W3096062020 hasConceptScore W3096062020C87227347 @default.
- W3096062020 hasLocation W30960620201 @default.
- W3096062020 hasOpenAccess W3096062020 @default.
- W3096062020 hasPrimaryLocation W30960620201 @default.
- W3096062020 hasRelatedWork W128842733 @default.
- W3096062020 hasRelatedWork W1881193884 @default.
- W3096062020 hasRelatedWork W1971577239 @default.
- W3096062020 hasRelatedWork W2049390752 @default.
- W3096062020 hasRelatedWork W2052404504 @default.
- W3096062020 hasRelatedWork W2059891713 @default.
- W3096062020 hasRelatedWork W2062220081 @default.
- W3096062020 hasRelatedWork W2075105471 @default.
- W3096062020 hasRelatedWork W2239316752 @default.
- W3096062020 hasRelatedWork W2564901803 @default.
- W3096062020 hasRelatedWork W2917243820 @default.
- W3096062020 hasRelatedWork W2963953154 @default.
- W3096062020 hasRelatedWork W2972769578 @default.
- W3096062020 hasRelatedWork W3001276722 @default.
- W3096062020 hasRelatedWork W3013011281 @default.
- W3096062020 hasRelatedWork W3124903165 @default.
- W3096062020 hasRelatedWork W3134549093 @default.
- W3096062020 hasRelatedWork W3177940064 @default.
- W3096062020 hasRelatedWork W3210507143 @default.
- W3096062020 hasRelatedWork W2254433642 @default.
- W3096062020 isParatext "false" @default.
- W3096062020 isRetracted "false" @default.
- W3096062020 magId "3096062020" @default.
- W3096062020 workType "dissertation" @default.