Matches in SemOpenAlex for { <https://semopenalex.org/work/W3096082174> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W3096082174 endingPage "38" @default.
- W3096082174 startingPage "1" @default.
- W3096082174 abstract "Success of Natural Language Processing (NLP) models, just like all advanced machine learning models, rely heavily on large -scale lexical resources. For English, English WordNet (EWN) is a leading example of a large-scale resource that has enabled advances in Natural Language Understanding (NLU) tasks such as word sense disambiguation, question answering, sentiment analysis, and emotion recognition. EWN includes sets of cognitive synonyms called synsets, which are interlinked by means of conceptual-semantic and lexical relations and where each synset expresses a distinct concept. However, other languages are still lagging behind in having large-scale and rich lexical resources similar to EWN. In this article, we focus on enabling the development of such resources for Arabic. While there have been efforts in developing an Arabic WordNet (AWN), the current version of AWN has its limitations in size and in lacking transliteration standards, which are important for compatibility with Arabic NLP tools. Previous efforts for extending AWN resulted in a lexicon, called ArSenL, that overcame the size and the transliteration standard limitation but was limited in accuracy due to the heuristic approach that only considered surface matching between the English definitions from the Standard Arabic Morphological Analyzer (SAMA) and EWN synset terms, and that resulted in inaccurate mapping of Arabic lemmas to EWN’s synsets. Furthermore, there has been limited exploration of other expansion methods due to expensive manual validation needed. To address these limitations of simultaneously having large-scale size with high accuracy and standard representations, the mapping problem is formulated as a link prediction problem between a large-scale Arabic lexicon and EWN, where a word in one lexicon is linked to a word in another lexicon if the two words are semantically related. We use a semi-supervised approach to create a training dataset by finding common terms in the large-scale Arabic resource and AWN. This set of data becomes implicitly linked to EWN and can be used for training and evaluating prediction models. We propose the use of a two-step Boosting method, where the first step aims at linking English translations of SAMA’s terms to EWN’s synsets. The second step uses surface similarity between SAMA’s glosses and EWN’s synsets. The method results in a new large-scale Arabic lexicon that we call ArSenL 2.0 as a sequel to the previously developed sentiment lexicon ArSenL. A comprehensive study covering both intrinsic and extrinsic evaluations shows the superiority of the method compared to several baseline and state-of-the-art link prediction methods. Compared to previously developed ArSenL, ArSenL 2.0 included a larger set of sentimentally charged adjectives and verbs. It also showed higher linking accuracy on the ground truth data compared to previous ArSenL. For extrinsic evaluation, ArSenL 2.0 was used for sentiment analysis and showed, here, too, higher accuracy compared to previous ArSenL." @default.
- W3096082174 created "2020-11-09" @default.
- W3096082174 creator A5084025527 @default.
- W3096082174 creator A5084517393 @default.
- W3096082174 creator A5088085383 @default.
- W3096082174 date "2020-11-30" @default.
- W3096082174 modified "2023-09-24" @default.
- W3096082174 title "A Link Prediction Approach for Accurately Mapping a Large-scale Arabic Lexical Resource to English WordNet" @default.
- W3096082174 cites W1126420929 @default.
- W3096082174 cites W1561908597 @default.
- W3096082174 cites W1933546049 @default.
- W3096082174 cites W1984708705 @default.
- W3096082174 cites W1993833738 @default.
- W3096082174 cites W2009724631 @default.
- W3096082174 cites W2024226786 @default.
- W3096082174 cites W2031998113 @default.
- W3096082174 cites W2041689999 @default.
- W3096082174 cites W2043287290 @default.
- W3096082174 cites W2052307613 @default.
- W3096082174 cites W2087045154 @default.
- W3096082174 cites W2098603082 @default.
- W3096082174 cites W2102381086 @default.
- W3096082174 cites W2120699290 @default.
- W3096082174 cites W2127751640 @default.
- W3096082174 cites W2177040365 @default.
- W3096082174 cites W2250645093 @default.
- W3096082174 cites W2250734458 @default.
- W3096082174 cites W2251526503 @default.
- W3096082174 cites W2252067416 @default.
- W3096082174 cites W2327415498 @default.
- W3096082174 cites W2516105622 @default.
- W3096082174 cites W2587163726 @default.
- W3096082174 cites W2625475744 @default.
- W3096082174 cites W2742123861 @default.
- W3096082174 cites W2750939699 @default.
- W3096082174 cites W2771841020 @default.
- W3096082174 cites W2806028205 @default.
- W3096082174 cites W2807136170 @default.
- W3096082174 cites W2909471801 @default.
- W3096082174 cites W2913360413 @default.
- W3096082174 cites W3007107944 @default.
- W3096082174 doi "https://doi.org/10.1145/3404854" @default.
- W3096082174 hasPublicationYear "2020" @default.
- W3096082174 type Work @default.
- W3096082174 sameAs 3096082174 @default.
- W3096082174 citedByCount "5" @default.
- W3096082174 countsByYear W30960821742021 @default.
- W3096082174 countsByYear W30960821742022 @default.
- W3096082174 countsByYear W30960821742023 @default.
- W3096082174 crossrefType "journal-article" @default.
- W3096082174 hasAuthorship W3096082174A5084025527 @default.
- W3096082174 hasAuthorship W3096082174A5084517393 @default.
- W3096082174 hasAuthorship W3096082174A5088085383 @default.
- W3096082174 hasConcept C121332964 @default.
- W3096082174 hasConcept C154945302 @default.
- W3096082174 hasConcept C157659113 @default.
- W3096082174 hasConcept C204321447 @default.
- W3096082174 hasConcept C2778121359 @default.
- W3096082174 hasConcept C2778755073 @default.
- W3096082174 hasConcept C2780403423 @default.
- W3096082174 hasConcept C41008148 @default.
- W3096082174 hasConcept C520968082 @default.
- W3096082174 hasConcept C62520636 @default.
- W3096082174 hasConceptScore W3096082174C121332964 @default.
- W3096082174 hasConceptScore W3096082174C154945302 @default.
- W3096082174 hasConceptScore W3096082174C157659113 @default.
- W3096082174 hasConceptScore W3096082174C204321447 @default.
- W3096082174 hasConceptScore W3096082174C2778121359 @default.
- W3096082174 hasConceptScore W3096082174C2778755073 @default.
- W3096082174 hasConceptScore W3096082174C2780403423 @default.
- W3096082174 hasConceptScore W3096082174C41008148 @default.
- W3096082174 hasConceptScore W3096082174C520968082 @default.
- W3096082174 hasConceptScore W3096082174C62520636 @default.
- W3096082174 hasFunder F4320332753 @default.
- W3096082174 hasIssue "6" @default.
- W3096082174 hasLocation W30960821741 @default.
- W3096082174 hasOpenAccess W3096082174 @default.
- W3096082174 hasPrimaryLocation W30960821741 @default.
- W3096082174 hasRelatedWork W1529127285 @default.
- W3096082174 hasRelatedWork W1546303966 @default.
- W3096082174 hasRelatedWork W1566644929 @default.
- W3096082174 hasRelatedWork W2046464618 @default.
- W3096082174 hasRelatedWork W2097162496 @default.
- W3096082174 hasRelatedWork W2338796508 @default.
- W3096082174 hasRelatedWork W2599648454 @default.
- W3096082174 hasRelatedWork W3198763071 @default.
- W3096082174 hasRelatedWork W3213846217 @default.
- W3096082174 hasRelatedWork W2185760619 @default.
- W3096082174 hasVolume "19" @default.
- W3096082174 isParatext "false" @default.
- W3096082174 isRetracted "false" @default.
- W3096082174 magId "3096082174" @default.
- W3096082174 workType "article" @default.